Ficha 2 – Funções com Condições e Ciclos Simples

2.1 Somatórios e Factoriais

Especificar as seguintes funções

- a) **soma_int(n):** retorna a soma dos primeiros n inteiros positivos.
- b) **soma_par(n):** retorna a soma dos primeiros n pares positivos.
- c) **soma_impar(n):** retorna a soma dos primeiros n impares positivos.
- d) factorial(n): retorna o factorial do inteiro positivo n.
- e) arranjos(n,k): retorna o número de arranjos de n objectos k a k (sem repetições).
- f) **combin(n,k):** retorna o número de combinações de n objectos k a k (sem repetições).

2.2 Determinar o mdc de 2 inteiros

Utilizar o algoritmo de Euclides para especificar a função **mdc(m,n)** que avalia o maior divisor comum entre **m** e **n** (inteiros positivos).

Nota: (Ver acetatos da 1^a aula prática) O algoritmo mantém dois números \mathbf{p} e \mathbf{q} ($\mathbf{p} > \mathbf{q}$) e a sua subtracção \mathbf{s} . Enquanto \mathbf{s} for diferente de \mathbf{q} : a) eliminar \mathbf{p} e \mathbf{b}) Actualizar os valores de \mathbf{p} e \mathbf{q} com os anteriores valores de \mathbf{s} e \mathbf{q} (notar que \mathbf{s} pode ser maior ou menor que \mathbf{q}). Quando $\mathbf{s} = \mathbf{q}$ esse valor é o mdc dos números iniciais.

2.1 Determinar o mmc de 2 inteiros

Como sabe o menor múltiplo comum de dois naturais \mathbf{m} e \mathbf{n} pode obter-se através da fórmula $\mathbf{m}^*\mathbf{n}/\mathbf{p}$, em que \mathbf{p} é o maior divisor comum de \mathbf{m} e \mathbf{n} . Especificar a função $\mathbf{mmc}(\mathbf{m},\mathbf{n})$ utilizando a função \mathbf{mdc} do problema anterior.

2.2 Exponencial

Especificar a função expo(x) que implementa a função exponencial através da série (truncada)

$$e(x) = 1 + x + x^2/2! + x^3/3! + x^4/4! + x^5/5! + ...$$

Nota: Esta série converge muito rapidamente, pelo que pode truncá-la quando o termo desprezado for inferior a delta = 0.00001.

2.3 Seno

i. Especificar a função seno(x) (x em radianos; assuma-se $0 \le x \le pi/2$) através da fórmula seno(x) = x - x3/3! + x5/5! - x7/7! + x9/9! - ...

Nota: Como a série (em valor absoluto) é decrescente e alternada o erro de truncagem é inferior ao primeiro termo desprezado. Considere assim como critério de paragem a situação em que o termo xi/i! seja inferior a 0.01% da soma acumulada.

ii. Utilize a função anterior para definir a função **seno_g(x)** em que o argumento é dado em graus.

2.4 Coseno

- i. Especificar a função coseno(x) (x em radianos; assuma-se $0 \le x \le pi/2$) através da fórmula coseno(x) = 1- x2/2! + x4/4! x6/6! + x8/8! ...
- ii. Utilize a função anterior para definir a função coseno g(x) com o argumento dado em graus.

2.5 Funções Trigonométricas

Utilize as funções anteriores para especificar as restantes funções trigonométricas (tangente, cotangente, secante e co-secante).

2.6 Funções Hiperbólicas

Tendo em conta que as funções seno hiperbólico e coseno hiperbólico são definidas como

$$sh(x) = \frac{e^x - e^{-x}}{2}$$
 e $ch(x) = \frac{e^x + e^{-x}}{2}$

especificar essas funções hiperbólicas funções em função das funções definidas anteriormente.