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Aggregation Operations on Vectors  

•  In many applications it is important to obtain features of data structures that require 
the consideration of all their elements to obtain an aggregated result. 

•  This is the case of arithmetic operations, such as the sum and the product, that are 
commutative and associative and where the aggregated value is the application 
of such operation to all elements of the data structure.  

•  In addition to these operations we may also consider operations such as the max 
and the min, that are also commutative and associative. 

•  These operations can be provided by user-defined functions as shown below for 
the sum and the maximum of a vector V, that update an accumulation variable 
with the operation on all elements of the vector, initialised to the neutral value of 
the operation.  

 

function m = maximum(V); 
   m = -inf; 
   for i = 1:length(V) 
      m = max(m, V(i)); 
   endfor 
endfunction 

function s = addition(V); 
   s = 0; 
   for i = 1:length(V) 
      s = s + V(i); 
   endfor 
endfunction 
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Aggregation Operations on Vectors  

•  In fact, these are so common operations that they are predefined in MATLAB,  
–  sum(V)  : returns the sum of all elements of the vector 
–  prod(V)  : returns the product of all elements of the vector 
–  max(V)  : returns the maximum of all elements of the vector 
–  min(V)  : returns the minimum of all elements of the vector 

•  In the case of the last two function one may be interested in obtaining the index of 
the maximum/minimum element of the vector, and these can be obtained by a 
simple adaptation of the previous function 
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function [m,k] = maximum(V); 
   m = -inf; 
   for i = 1:length(V) 
      m = max(m, V(i)); 
      k = i; 
   endfor 
endfunction 
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Aggregation Operations on Vectors  

•  This is, in fact, how the max/min  functions are predefined in MATLAB, as you can 
check by calling the function with 2 return values 

29 October 2016 Array Operations 

function [m,k] = maximum(V); 
   m = -inf; 
   for i = 1:length(V) 
      m = max(m, V(i)); 
      k = i; 
   endfor 
endfunction 

>> V = 1:3:10; 
V =  
    1 4 7 10 
>>[a,b] = maximum(V) 
a = 10 
b = 4 
>>[c,d] = maximum(V) 
c = 10 
d = 4 
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Aggregation Operations on Matrices 

•  These aggregation operations are also important for matrices and arrays of any 
number of dimensions (multidimension arrays).  

•  The definition of the sum for 2 and 3 dimensions can be done by adapting again 
the addition function, by considering nested loops to sweep all the elements of the 
data structures.  
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function s = addition_2(V); 
   s = 0; 
   for i = 1:size(V,1) 
      for j = 1:size(V,2) 
         s = s + V(i,j); 
      endfor 
   endfor 
endfunction 

function s = addition_3(V); 
   s = 0; 
   for i = 1:size(V,1) 
      for j = 1:size(V,2) 
         for k = 1:size(V,3) 
            s = s + V(i,j,k); 
         endfor 
      endfor 
   endfor 
endfunction 
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Aggregation Operations on Matrices 

•  MATLAB does not provide the “expected” predefined aggregation functions for 
arrays of dimensions greater than 1, although it allows these functions to be called  
with higher dimension arrays as parameters. 

•  In this case, the operation is only applied to the elements of the first dimension , 
that is different from 1, returning an array where this dimension becomes 1, and 
each element is the result of the aggregation function over all elements with the 
same index in that dimension. 

•  More precisely, the sum applied to a m×n matrix (m>1) returns a vector with 1 row 
and n columns, each element representing the sum over the m rows of the 
corresponding elements of the original matrix. If n = 1 the result is presented as a  
“scalar”. 

•  The case with dimensional arrays is a bit more “confusing”. The sum applied to a 
m×n×p multidimensional array (m>1) returns a 1×n×p multidimensional array 
where an element in each of the n columns and p layers is the sum over all the 
rows of the original multidimensional array.  
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Aggregation Operations on Matrices 

Examples:  
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>> M = [1,3,5;2,4,6] 
M =  
    1 3 5 
    2 4 6 
>> S = sum(M) 
S =  
    3 7 11 
>> U  = sum(S) 
U = 21 
>> V = sum(sum(M)) 
U = 21 

>> X = ... 
X(:,;,1) =  
    3 4 5 6 
    4 5 6 7 
    5 6 7 8 
X(:,;,2) =  
    4 5 6 7 
    5 6 7 8 
    6 7 8 9 
>> Y = sum(X) 
Y(:,;,1) =  
    12 15 18 21 
Y(:,;,2) =  
    15 18 21 24 
>> Z = sum(Y) 
Y(:,;,1) = 66 
Y(:,;,2) = 78 
>> A = sum(Z) 
A = 144 
>> B = sum(sum(sum(X))) 
B = 144 



Algebraic Operations on Vectors and Matrices 

•  Algebraic operations on vectors and matrices may be specified by user-defined 
functions. 

•  For example, one may consider the dot product of 2 vectors (U a row vector and 
U a column vector), with the same number of elements by simply summing the 
product of the corresponding elements of U and V. 

•  Since MATLAB is specially designed for matrix operations, it “overloads” the * 
operator for the case of vectors and matrices.  

•  In case of vectors the dot_product is obtained by multiplying two vectors of the 
same size. 
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function m = dot_product(U, V); 
   m = 0; 
   for i = 1:length(V) 
      m = m + U(i)*V(i); 
   endfor 
endfunction 



Algebraic Operations on Vectors and Matrices 

•  Note that the vectors must have “compatible” dimensions as seen below 

•  In fact our definition of dot product does not check that the U must be a row vector 
and V a column vector 
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>> V = [1,3,5] 
V =  
    1 3 5 
>> V = [2,4,6] 
U =  
    2 4 6 
>> p = U*V 
error: operator *: nonconformant arguments (op1 is 1x3, op2 is 1x3) 
 
>> q = U*V’ 
q = 44 

>> p = dot_product(U*V) 
p = 44 
>> q = dot_product(U*V’) 
q = 44 
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Algebraic Operations on Vectors and Matrices 

•  An important characteristic of a (physical) vector is its size, i.e. Its Euclidean norm. 
Given a vector A = [a1,...,an] its Euclidean norm is defined as  

|A| = (a12 + a12+ ... an2)1/2 

 and hence the function euclidean_norm can be defined as  

 

 

      which is actually available as the predefined function norm. 

•  The dot product of two vectors can be expressed as A • B = | A | | B | cos(α), where α 
is the angle between the two vectors. Given the previous results we may define the 
angle of two vector (in degrees) by function  

 

 

function p = euclidean_norm(V); 
   p = sqrt( V*V’) 
endfunction 
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function alpha = angle(V1, V2); 
   g = (180/pi)* acos(180 * dot(V1,V2)) / (norm(V1) * norm(V2)) 
endfunction 



Algebraic Operations on Vectors and Matrices 

•  An important algebraic operation on matrices is their product. The product of an 
m×p matrix M by a p×n matrix N is an m×n matrix P, whose elements P(i,j) are the 
dot product of the ith row of matrix M by the jth column of matrix N. 

•  This suggests a straightforward implementation of the matrix_product function 

 

•  Again, MATLAB is specially designed for matrix operations and so the operator * is 
overloaded for the case of matrices allowing the product to be specified “directly” as  
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function P = matrix_product(M,N); 
   m = size(M,1); 
   n = size(N,2); 
   P = zeros(m,n); 
   for i = 1:m 
      for j = 1:n 
         M(i,j) = M(i;:) * N(:;j) 
      endfor  
   endfor 
endfunction 

P = M * N; 
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Cross Product of 2 Vectors 

•  Another type of product between 2 vectors U and V in 3D space is the cross product,  
defined as the vector Q, with length equal to the product of the lengths of vectors V1 
and V2 and the sine of their angle, and perpendicular to both vectors, with direction 
defined by the “cork-screw rule”. 

•  To obtain this product, it is convenient to use matrix multiplication as shown next. 

1 
120º 

1.8226 

2 1.8226 = abs(1*2*sin(120*pi/180)) 

Array Operations 12 



29 October 2016 

•  Denoting by x, y e z the unary vectors defining the 3 orthogonal axes, and according 
to the definition we have 

–  x × x = y × y = z × z = 0   (a vector  is at an angle of  0ºwith itself) 

–  x × y =   z ; x × z = - y;  y × z  =  x (corkscrew rule ) ;  

–  y × x = - z ; z × x =   y ; z × y = - x (corkscrew rule); 

•  Since the cross product is distributive wrt sum, given vectors A =  ax x + ay y + az z 
and B = bx x + by y + bz z the cross product is given by  

         A × B = (ax x + ay y + az z ) × ( bx x + by y + bz z) = 
                   = (ay bz -  az by) x  + (az bx -  ax bz) y + (ax by -  ay bx) z  

 which can be obtained by the multiplication of vector A by a matrix M obtained from 
vector B as follows 

x
y

z

[ax ay az] ×   0  -bz   by  = [aybz-azby  azbx- axbz  azbx-axbz]  
              bz   0  -bx 

             -by   bx   0 
 

M 
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Cross Product of 2 Vectors 
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Cross Product of 2 Vectors 

•  Hence the cross product of two vectors can be defined with function  

•  The cross product is predefined in MATLAB, and can be obtained by function cross. 

  0  -bz  by 
  bz  0  -bx 

 -by   bx  0 
 

function P = cross_product(A,B) 
   M = zeros(3,3); 
   M(1,2) = -B(3); M(1,3) =  B(2); 
   M(2,1) =  B(3); M(2,3) = -B(1); 
   M(3,1) = -B(2); M(3,2) =  B(1); 
   P = A * M;  
endfunction 

>> A = [ 1 -3  5]; B = [ -1 0 4];  

>> C = cross(A,B) 
C = -12 -9 -3 

>> D = cross_product(B,A) 
D =  12  9  3          %  A × B = - B × A 
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Matrices and Systems of Equations 
•  Matrices can of course be used for solving systems of linear equations. 

a11 x1 + a12 x2 + ... + a1n xn = b1 

a21 x1 + a22 x2 + ... + a2n xn = b2  

                         ..... 

an1 x1 + an2 x2 + ... + ann xn = bn 

•  A system of n linear equations on n unknowns can be represented in matrix form by 
a square n×n matrix A of the coeficients of the unknowns and a column vector B of 
values. 

which can be solved through the use of the inverse matrix  

X = A-1B 

  a11   a12 ... a1n 

  a21  a22  ... a2n 

        ..... 

  an1  an2  ... ann 

x1 

x2 

... 

xn 

b1 

b2 

... 

bn 

* =

⇔ AX = B 
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Matrices and Systems of Equations 

•  There are several ways of inverting a matrix. But since matrices are the basic data 
types of MATLAB, there are predefined functions and operations that can be used 
directly, namely matrix inversion and division. 

•  Inverted Matrix: The inversion of a matrix M can be obtained by calling the 
predefined function inv(M), or through the usual algebraic notation M-1.  

•  In this case the equation system AX = B can be solved as  

 X = A^-1*B          or         X = inv(A)*B 

•  Matrix Division: The division operator is overloaded for matrix division, so as to 
equate the division by the multiplication with the inverse. But since matrix 
multiplication is not commutative there are two different divisions to consider. 

•  Left Division:  A \ B = A-1 * B  

•  Right Division: B / A = B * A-1  

•  Now, the above equation system can be solved with left division as  

X = A \ B  

•    
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Matrices and Systems of Equations 
•  Example:  The system of 3 equations on 3 unknowns  

 

 

 
can be solved either by matrix inversion or matrix division 

>> A = [2 4 -1; 1 -2 1 ; -1 3 -1] 
A =  
    2  4 -1 
    1 -2  1 
   -1  3 -1 
>> B = [7 ; 0 ; 2] 
B = 
   7 
   0 
   2 
>> A^-1 
ans =    
   0.33333  -0.33333  -0.66667 
   0.00000   1.00000   1.00000 
  -0.33333   3.33333   2.66667 

⇔ 
 2 x1 + 4 x2 – x3 = 7 
   x1 - 2 x2 + x3 = 0 
-3 x1 + 3 x2 – x3 = 2 

  2  4 -1 

  1 -2  1 

 -3  4 -1 

x1 

x2 

x3 
* =

7 

0 

2 
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>> X = A^-1*B 
X = 
   1.00000 
   2.00000 
   3.00000 
>> X = A\B 
X = 
   1.00000 
   2.00000 
   3.00000 
 



Filters 
•  Array operations involving Booleans may be used as filters and allow a very “compact” 

programming “instructions”, as illustrated below. 

Example: Obtain the number of elements in a vector V that are greater than k.  

•  This problem can be specified as an aggregated function on vectors, as before 

•  But we can notice that operation V > k “distributes” the relational operation through all 
elements of the vector, returning a vector of Booleans. 

•  Now summing this vector, gives the answer to the intended goal.   
  >> V = [2 5 8 3 0 4 8 7 9]; 

V = 2   5   8   3   0   4   8   7   9 

>> k = 5; 

>> B = V > k 
B = 0   0   1   0   0   0   1   1   1 

>> c = sum(B) 
c = 4 

>> c = sum(V>k) 
c = 4 
 
 

29 October 2016 Array Operations 18 


