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Random Processes 
•  Many “systems” do not have an analytical model from which we may study their 

behaviour over time, as well as making decisions about their design. Nevertheless, 
for many such systems, their behaviour may be analysed by simulation. 

•  An important source of uncertainty is the occurrence of non-deterministic events, 
affecting such behaviour, but for which there is no exact information about them. 

•  In this case, studying these systems requires the consideration of stochastic 
processes, i.e. phenomena that evolve over time or space taking into account a 
sequence of events. The timing of these events can be approximated given the 
incomplete information that may be known, such as the patterns observed in the 
past of their occurrence. 

•  These patterns are typically modelled by probability distributions that fit the 
observations, as studied in Statistics. 

•  Here we will thus consider nondeterministic processes where events follow some 
probability distribution, discrete or continuous, and study how to model systems 
subject to this type of events. 
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(Pseudo-) Random Numbers 
•  As will be seen briefly, any nondeterministic process that follows a known 

probability distribution may be simulated by means of a random generator 
function, that generates numbers in the interval 0 .. 1 with a uniform distribution. 

•  In most computer languages and tools (as in MATLAB) this random generator is 
available through a system defined function rand(). 

•  Based on this function any nondeterministic process, defined by a known 
probability density function (PDF), p, can be simulated. 

•  Informally, this function is defined over a domain, discrete or continuous, of the 
values that a probabilistic variable can take. We will assume here a numerical 
domain ranging in the interval a..b. 

•  Remind that the cumulative distribution function (CDF),  P, can be defined as 
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P(x) = p(v)
v=a

v=x

∑

Discrete Domain 

P(x) = p(v)dv
v=a

v=b

∫

Continuous Domains 
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Inverse Method 
•  The inverse method takes into account that, for a random variable taking values in 

the domain a .. b, it is  
P(a) = 0   and P(b) = 1 

•  Then, the random variable may be implemented by the inverse method in the two 
following steps: 
o  1. Generate a random number r, with uniform distribution in the interval 0 .. 1; 
o  2. Return x = F-1(r)  

•  In fact the probability pi of generating a number in interval xi .. xi+dx, i.e. the 
probability that the variable takes an approximate value  xi is, dx. Since, 
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•  p1 = dr1 = d P(x1)/dx * dx = p(x1) dx; 

•  p2 = dr2 = d P(x2)/dx * dx = p(x2) dx; 

•  Hence the probabilities of two values in the 
domain being generated is proportional to 
the value of their probability density function. 
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Inverse Method 
Example: Simulate the throwing of a dice 

•  In this discrete distribution, each of the values 1 to 6 occurs with probability 1/6.  

•  The probability distribution P(x), is the step function shown in the figure; 

•  The inverse function, P-1(x), can be computed by finding the step (1..6) of the 
probability function that corresponds to the random number r, generated by function 
rand(), as implemented in function dice(). 
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function v = dice(); 
 r = rand(); 
 if      r <= 1/6 v = 1; 
 elseif r <= 2/6 v = 2; 
 elseif r <= 3/6 v = 3; 
 elseif r <= 4/6 v = 4; 
 elseif r <= 5/6 v = 5; 
 else            v = 6; 

   endif 
endfunction 
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Inverse Method 
Example: Simulate the next arrival of a stochastic process following an exponential 
distribution, with mean time m = 1/λ	

•  This is a continuous distribution where p(x) = λ e-λx, ranging from 0 to ∞. 

•  The probability function r = F(x) = (1- e-λx) (shown for λ = 1) 

•  The inverse function is then x = F-1(r) = - ln(1-r) / λ 

•  Hence, these arrivals can be modelled by a variable obtained through function 
exp_inv(lambda), shown below parameterised by the value of λ. 
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function x = exp_inv(lambda); 
 r = rand(); 
 x = -ln(1-r)/lambda 

endfunction 
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Accept/Reject Method 
•  Of course, the inverse method assumes that it is possible to obtain a F-1,  the 

inverse of the cumulative distribution function F. 

•  When a closed form of F-1 is not available, the random variable may be 
implemented by the accept/reject method. Assuming  

–  The domain of the variable is a .. b, and  

–  The probability density function in the domain is always less or equal to m 

•  Then the random variable may be implemented in the following steps: 
1.  Generate a random number x, with uniform distribution in the interval a .. b; 
2.  Generate a random number r, with uniform distribution in the interval 0 .. m; 
3.  Accept x, if r ≤ p(x), reject it otherwise 

•  In some cases, the domain of a continuous random variable is infinite. In this case, 
one may truncate the domain so that the values truncated have a “very low 
probability” 
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Accept/Reject Method 
•  The probability that a value xi in the domain a..b is accepted is thus 

–  Probability that xi is generated, i.e. the value is between xi and xi +dx;  
–  Probability that the value is subsequently accepted, i.e. p(xi) ≤ r. 

•  Given two values x1 and x2, the first probability is the same for both (dx is the 
same) .  

•  Since r is generated in the range 0..M, their acceptance probability is, respectively, 
p(x1)/M and p(x2)/M. 

•  Hence the probability of generating two values x1 and x2 is proportional to the 
value of their probability density function  
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Accept/Reject Method 
Example: Simulate the next arrival of a stochastic process following an exponential 
distribution  

•  This is a continuous distribution where p(x) = λ e-λx, ranging from 0 to ∞.  

•  The domain must then be truncated to some value T (T=5 in the figure). 

•  The function is always less or equal to λ (so we can use  M = λ) . 

•  Hence, these arrivals can be modelled by a variable obtained through function 
exp_ar(lb,t), shown below parameterised by the values of λ and k. 
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function x = exp_ar(lb,T); 
 accept = 0; 
 while ! accept 
  x = T*rand(); 
  r = lb*rand(); 
  accept = (r <= lb*exp(-lb*x)) 
 endwhile 

endfunction 
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Simulation of Stochastic Systems 
•  A stochastic system has a behaviour that depends on a stochastic process, i.e. a 

sequence of non-deterministic events that evolve over time or space. 

•  Here we assume that the nondeterministic events may be modelled by random 
variables specified by some probability distribution. 

•  At any time, the system is characterised by its state, i.e. the value of the set of 
state variables that completely specify it.  

•  Whenever an event occurs, it causes some (possibly empty) change of the sistem 
to a new state. 

•  Such a system can thus be modelled by an automaton, defined informally as  

–  A set of states, some of which might be the initial states 

–  A set of transitions, between two states, caused by some event.  

•  The behaviour of the system is modelled by subjecting the automaton to a set of 
“external” events, i.e. those that are independent of the system. 

Note: In general an automaton produces an output. Here we assume that the output of interest, 
may be obtained from the state variables, 
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Simulation of Stochastic Systems 
•  The simulation of a system, i.e. the behaviour of the corresponding automaton, 

may be specified through the following generic algorithm, where 
–  R = <r1, r2, …, rm> is a sequence of “requests” (external to the system) 
–  S = <s0, s1, …, sn> is a sequence of states 

 

•  Function next_event simply detects the event occurring next, but does not affect 
neither the sequence of requests nor the state of the automaton. 

•  Function update uses this event to change the state of the automaton, and 
possibly remove requests from the sequence. 

•  The new state is added to the sequence of states, and the loop proceeds until an 
end event is detected.  
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function S = simulate(s,R); 
 e = “dummy”; S = []; 
 while e != “end” 
  e = next_event(s,R); 
    [s,R] = update(s,R,e); 
  S = [S,s]; 
 endwhile 

endfunction 
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Example: Random Walk 
•  This generic algorithm must be instantiated by specifying the adequate next_event 

and update functions. We illustrate this with a simple example: a random walk, 
i.e.  the movement of an object composed of a sequence of random steps. 

•  In particular we will consider the steps to be either forward or backwards, occurring 
with equal probability, and causing the position of the object to move, respectively, 
+1 or -1 positions from its current position. 

•  State Variables: 
–  The state s consists a single integer variable, stating the position of the object. 
–  We may assume that the initial state corresponds to s = 0. 

•  Events 
–  There are two types of “real” events, move_forward and move_backwards. 

In addition we create a virtual event “end” to stop the simulation. 

•  Transitions 
–  Whenever a move_forward  event occurs, s increases by 1.  
–  Whenever a move_backwards event occurs, s decreases by 1. 
–  When the virtual end event occurs, the similation finishes. 
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Example: Random Walk 
•  For convenience, we may encode both the requests to steps forward and 

backwards and the corresponding events by integers +1 and -1, respectively, and 
the end event by integer 0. 

•  Moreover, the sequence of n events is encoded as an n element array, whose 
elements are the numbers +1 and -1, generated with equal probability. 

•  This can be done with function generate_random_walk_events 
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function R = generate_random_walk_events(n) 
 R = zeros(1,n+1); 
 for i = 1:n 
  R(i) = 2*(round(rand())-0.5)  
    % 0/1 with probability = 0.5 
 endfor 
 R(n+1) = 0; 

endfunction 
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Example: Random Walk 
•  Function next_event detects the type of the next event, which in this case is simply 

the value of the first element of the sequence of events, as shown 

•  In this simple example, function update simply removes the event from the 
sequence, and applies it to the state variable s. 

•  These functions can be used to obtain a simulation of a random walk process, as 
shown below 
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function [s,E] = update(s,R,e); 
 R = R(2:end) 
 s = s+e 

endfunction 
 

function e_type = next_event(s,R) 
 e = E(1) 

endfunction; 

function S = simulate_random_walk(n); 
 R = generate_random_walk_events(n); 
 S = simulate(s,E); 

endfunction 
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Monte Carlo Simulation 
•  A simple simulation does not provide might not provide sufficient information for 

the characterization of the behaviour of a system. Many of these characteristics do 
not have a deterministic value but only a probabilistic one. 

•  In this case, many different and independent simulations may be performed so that 
such statistic values (e.g. averages and variances) may be collected from the 
results obtained in the different simulations. 

•  This is the basic idea behind Monte Carlo Simulation: 

–  Run a sufficient number of simulations 

–  Aggregate the values of interest from the results of the different simulations 

•  In general these should be sufficient to guarantee the significance of the results, 
but this topic is beyond the scope of this course.   

•  Of course if we are interested in some particular feature we may adapt the 
simulation function, so as to simply provide the results we are interested in. 
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Monte Carlo Simulation: Random Walk 
•  For a random walk, we may be interested in obtaining the probability that 

distance d from the initial position is reached in n (or less) steps. 
•  This probability can be approximated by the frequency in which this occcurs, given 

a sufficient large number of runs of the random_walk process. 
•  We may thus perform ns simulations and count the number ps of those that 

reached the distance d in n steps (or less), as shown below. 

 

•  Here we assumed a function check that analyses the sequence S of states 
generated in a simulation and detects whether a distance ± d was reached. Of 
course, it would be more efficient to stop a simulation as soon as distance ±d is 
reached and return a Boolean indicating whether this was the case.  

•  This is left as an exercise. 
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function p = random_walk_reach_probability(n,d) 
 ns = 1000; ps = 0; 
 for i = 1:ns 
  S = simulate_random_walk(n,d); 
    if check(S,d) ps = ps+1; endif 
 endfor 
 p = ps/ns; 

endfunction 
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Example: Queuing Systems 
•  Queuing systems are systems relying on the occurrence of requests that are to be 

serviced, if possible, by a number of existing resources. 

•  Examples of these systems are everywhere, ranging from traditional supermarket 
tills or petrol stations, to more “present day” call centres or computers servers. 

•  Broadly, these systems are characterised by the number of servers that are 
available (in parallel), the queuing discipline used (i.e. a simple queue or different 
queues, the maximum size of a queue – if full, a new request is rejected) and the 
the service provided. In particular, the service time is usually characterised by 
some probability distribution. 

•  The behaviour of these queuing systems depends of course on the arrivals of 
requests that can also be characterised by some probability distribution. The 
simulation of these systems can use the previous scheme, taking into account that  

–  Requests are external events, that queue to be serviced 
–  Whenever a server is free, a request from a queue is moved to a server; 
–  Whenever a service is completed, a terminating event occurs, denoting that 

the corresponding server became free. 
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Example: Queuing Systems 
•  To simulate such queuing systems, we must model the state of the system and the 

events it is subject to. There are several possible variants of these systems so we 
will consider the following 

Example:   
•  A system with a single server and accepting one request on the waiting. If more 

requests arrive, they are rejected. We also assume  
•  Arrivals events follow an exponential distribution with mean time m between 

arrivals m (for example, m = 5 secs) 
•  Services are processed in some constant time, p (for example, p = 4 secs) 

•  For this problem, we are interested in studying: 
a.   What percentage of time the server is busy 
b.  The percentage of requests that are rejected. 

•  To study this system, we must of course specify  
a.  The type of events to be considered 
b.  A model of the system, namely the variables that represent a current state 

of the system, as well as well as additional information about the past 
behaviour used to answer the questions posed. 
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Example: Queuing Systems 
State Variables: 

•  We model the state of the system by a structure s, with the following fields 
–  s.busy  – a Boolean denoting whether the server is busy 
–  s.finish_t  – the time the server will finish the service (when busy is 1) 
–  s.waiting  – a Boolean denoting whether there is a request already waiting 
–  s.arrival_t  –  the time the waiting request has arrived (when waiting is 1) 
–  s.n_accepted – the number of requests accepted so far 
–  s.n_rejected  – the number of requests rejected so far 
–  s.working_t  – the time the server has been busy so far 

Note:  The 3 last fields of the last state answer the questions we are interested in. 

Events: 

•  In this case, events will be of three types, in addition to a virtual end event: 
–  arrival  – a request is transferred to the queue of the system 
–  start  – a request in the queue is transferred to the server 
–  term  – a service terminates being served 
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Example: Queuing Systems 
•  We simulate the system by means of a function simulate_simple_queue, that 

will use the previous functions adapted for the mentioned encodings of the current 
state and the request sequence that  

 

 

•  The simulation itself is similar to that explained before, repeated below 
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function S = simulate(s,R); 
 e = “dummy”; 
 while e != “end” 
  e = next_event(s,R); 
    [s,R] = update(s,R,e); 
  S = [S,s]; 
 endwhile 

endfunction 
 

function [p_rjct,p_busy] = simulate_simple_queue(n,m); 
 R = generate_exp_arrivals(n,m); 
 s = initial_state(); 
 S = simulate(s,R); 
 acpt = S(end).n_accepted;  
 rjct = S(end).n_rejected; 
 p_rjct = rjct/(acpt+rjct); 
 p_busy = S(end).working_t / S(end).finish_t;   

endfunction 
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Example: Queuing Systems 
Generation of the Sequence of Requests: 

•  We will study this system for an interval of time that should be large enough to 
gather significant statistical information.  

•  For example we may assume that 1000 requests are a sufficient large number, 
and so create a sequence of 1000 requests, each stored with the time in which it is 
made, with the following program 
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function R = generate_exp_arrivals(n,m); 
% n should be a number large enough  
% m is the mean time 
 R(1) = 0; 
 for i = 2:n_repeat 
  delta = exp_inv(1/m); % exponential distribution  
  R(i) = R(i-1) + delta; 
 endfor; 

endfunction 
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Example: Queuing Systems 
•  For this problem, the selection of the next_event can be done as follows: 
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function e = next_event(s,R) 
 if s.busy  
  if length(R) > 0 && s.finish_t > R(1)  e = 1; %“arrival” 
  else     e = 3; % “term” 
  endif 
 else      
  if ! s.waiting % && ! s.busy  
   if length(R) == 0  e = 4; % “end” 
   else  e = 1; % “arrival” 
   end 
  else   % s.waiting && ! s.busy  
     e = 2; % “start   
  endif 
 endif 

endfunction 
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Example: Queuing Systems 
Generation of the Sequence of Requests: 

•  We may now define the function update that changes the state of the system, and 
possibly, the state of the request sequence. 

•  The function may be implemented by means of different functions, one for each of 
the three type of events (arrival, start and term)  that are detected 
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function [s,R] = update(s,R,e); 
 if e == 1   % “arrival” 
  [s,R] = arrival(s,R); 
 elseif e == 2  % “start” 
  [s,R] = start_service(s,R); 
 else    % “term” 
  [s,R] = term_service(s,R); 
 endif 

endfunction 
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Example: Queuing Systems 
Event Processing 

Arrivals: 

–  If the event is an arrival, a request is transferred from the request sequence to the 
queue maintained by the system. 

–  Upon an arrival event, either the request is accepted or rejected (if the queue is 
full). Otherwise the time of arrival is recorded and the number of accepted / rejected 
messages is updated. 
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function [s,R] = arrival(s,R); 
 if s.waiting == 1 
  s.n_rejected = s.n_rejected + 1; 
 else 
  s.waiting = 1; 
  s.arrival_t = R(1); 
  s.n_accepted = s.n_accepted + 1; 
 end; 
 R = [R(2:end)]; 

endfunction 
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Example: Queuing Systems 
Event Processing 

Starts: 
–  If the event is an start, this means the server is not busy, and it must become so.  
–  Moreover, the queue becomes empty. 
–  The start of the service is either the time when the last service has terminated, or 

the time the request arrived into the queue (both recorded in the current state). 
–  The expected service time should be added to the start time to become the current 

finish time (in this case we use a constant time = 4), which updates the finishing 
time and the overall working time of the server 
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function [s,E] = start_service(s,E); 
 s.busy = 1; 
 s.waiting = 0; 
 start_time = max(s.finish_t, s.arrival_t); 
 service_time = 4; 
 s.finish_t = start_time + service_time; 
 s.working_t = s.working_t + service_time; 

endfunction 
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Example: Queuing Systems 
Event Processing 

Terms: 
•  If the event is a term, which means that the busy state variable has been true, then 

all that is required is to change the value of this busy variable. 
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function [s,R] = term_service(s,R); 
 s.busy = 0; 

endfunction 
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Example: Queuing Systems 
Simulation  
•  To start a simulations, it is still necessary to define the initial state 

 

 

 

 

 

 
•  With all the previous function in place, all that is needed to know the percentage of 

requests that are rejected, as well as the  percentage of time the server is busy is 
obtained with the call 
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>> [p_rej,p_busy] = simulate_simple_queue(n,m); 
  

function s = initial_state(); 
   s.busy = 0; 
   s.finish_t = 0; 
   s.waiting = 0; 
   s.arrival_t = 0; 
   s.n_accepted = 0; 
   s.n_rejected = 0; 
   s.working_t = 0; 
endfunction 


