
Random Variables; (Monte Carlo) Simulation

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semester 2016/2017

25 November 2016

Random Processes
•  Many “systems” do not have an analytical model from which we may study their

behaviour over time, as well as making decisions about their design. Nevertheless,
for many such systems, their behaviour may be analysed by simulation.

•  An important source of uncertainty is the occurrence of non-deterministic events,
affecting such behaviour, but for which there is no exact information about them.

•  In this case, studying these systems requires the consideration of stochastic
processes, i.e. phenomena that evolve over time or space taking into account a
sequence of events. The timing of these events can be approximated given the
incomplete information that may be known, such as the patterns observed in the
past of their occurrence.

•  These patterns are typically modelled by probability distributions that fit the
observations, as studied in Statistics.

•  Here we will thus consider nondeterministic processes where events follow some
probability distribution, discrete or continuous, and study how to model systems
subject to this type of events.

Random Variables; (Monte Carlo) Simulation 2

25 November 2016

(Pseudo-) Random Numbers
•  As will be seen briefly, any nondeterministic process that follows a known

probability distribution may be simulated by means of a random generator
function, that generates numbers in the interval 0 .. 1 with a uniform distribution.

•  In most computer languages and tools (as in MATLAB) this random generator is
available through a system defined function rand().

•  Based on this function any nondeterministic process, defined by a known
probability density function (PDF), p, can be simulated.

•  Informally, this function is defined over a domain, discrete or continuous, of the
values that a probabilistic variable can take. We will assume here a numerical
domain ranging in the interval a..b.

•  Remind that the cumulative distribution function (CDF), P, can be defined as

Random Variables; (Monte Carlo) Simulation 3

P(x) = p(v)
v=a

v=x

∑

Discrete Domain

P(x) = p(v)dv
v=a

v=b

∫

Continuous Domains

25 November 2016

Inverse Method
•  The inverse method takes into account that, for a random variable taking values in

the domain a .. b, it is
P(a) = 0 and P(b) = 1

•  Then, the random variable may be implemented by the inverse method in the two
following steps:
o  1. Generate a random number r, with uniform distribution in the interval 0 .. 1;
o  2. Return x = F-1(r)

•  In fact the probability pi of generating a number in interval xi .. xi+dx, i.e. the
probability that the variable takes an approximate value xi is, dx. Since,

Random Variables; (Monte Carlo) Simulation 4

•  p1 = dr1 = d P(x1)/dx * dx = p(x1) dx;

•  p2 = dr2 = d P(x2)/dx * dx = p(x2) dx;

•  Hence the probabilities of two values in the
domain being generated is proportional to
the value of their probability density function.

0

0.25

0.5

0.75

1

0 0.5 1 1.5 2 2.5 3 3.5

P(x)

dx dx

 x1 x2

dr1

dr2

25 November 2016

Inverse Method
Example: Simulate the throwing of a dice

•  In this discrete distribution, each of the values 1 to 6 occurs with probability 1/6.

•  The probability distribution P(x), is the step function shown in the figure;

•  The inverse function, P-1(x), can be computed by finding the step (1..6) of the
probability function that corresponds to the random number r, generated by function
rand(), as implemented in function dice().

Random Variables; (Monte Carlo) Simulation 5

function v = dice();
 r = rand();
 if r <= 1/6 v = 1;
 elseif r <= 2/6 v = 2;
 elseif r <= 3/6 v = 3;
 elseif r <= 4/6 v = 4;
 elseif r <= 5/6 v = 5;
 else v = 6;

 endif
endfunction

25 November 2016

Inverse Method
Example: Simulate the next arrival of a stochastic process following an exponential
distribution, with mean time m = 1/λ	

•  This is a continuous distribution where p(x) = λ e-λx, ranging from 0 to ∞.

•  The probability function r = F(x) = (1- e-λx) (shown for λ = 1)

•  The inverse function is then x = F-1(r) = - ln(1-r) / λ

•  Hence, these arrivals can be modelled by a variable obtained through function
exp_inv(lambda), shown below parameterised by the value of λ.

Random Variables; (Monte Carlo) Simulation 6

function x = exp_inv(lambda);
 r = rand();
 x = -ln(1-r)/lambda

endfunction

 0

0.25

0.5

0.75

1

0 1 2 3 4 5

1-exp(-x)

25 November 2016

Accept/Reject Method
•  Of course, the inverse method assumes that it is possible to obtain a F-1, the

inverse of the cumulative distribution function F.

•  When a closed form of F-1 is not available, the random variable may be
implemented by the accept/reject method. Assuming

–  The domain of the variable is a .. b, and

–  The probability density function in the domain is always less or equal to m

•  Then the random variable may be implemented in the following steps:
1.  Generate a random number x, with uniform distribution in the interval a .. b;
2.  Generate a random number r, with uniform distribution in the interval 0 .. m;
3.  Accept x, if r ≤ p(x), reject it otherwise

•  In some cases, the domain of a continuous random variable is infinite. In this case,
one may truncate the domain so that the values truncated have a “very low
probability”

 Random Variables; (Monte Carlo) Simulation 7

25 November 2016

Accept/Reject Method
•  The probability that a value xi in the domain a..b is accepted is thus

–  Probability that xi is generated, i.e. the value is between xi and xi +dx;
–  Probability that the value is subsequently accepted, i.e. p(xi) ≤ r.

•  Given two values x1 and x2, the first probability is the same for both (dx is the
same) .

•  Since r is generated in the range 0..M, their acceptance probability is, respectively,
p(x1)/M and p(x2)/M.

•  Hence the probability of generating two values x1 and x2 is proportional to the
value of their probability density function

Random Variables; (Monte Carlo) Simulation 8

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5

p(x) = 2 exp(-x)

M

x1 x2

25 November 2016

Accept/Reject Method
Example: Simulate the next arrival of a stochastic process following an exponential
distribution

•  This is a continuous distribution where p(x) = λ e-λx, ranging from 0 to ∞.

•  The domain must then be truncated to some value T (T=5 in the figure).

•  The function is always less or equal to λ (so we can use M = λ) .

•  Hence, these arrivals can be modelled by a variable obtained through function
exp_ar(lb,t), shown below parameterised by the values of λ and k.

Random Variables; (Monte Carlo) Simulation 9

function x = exp_ar(lb,T);
 accept = 0;
 while ! accept
 x = T*rand();
 r = lb*rand();
 accept = (r <= lb*exp(-lb*x))
 endwhile

endfunction

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

p(x) = 2 exp(-2x)

25 November 2016

Simulation of Stochastic Systems
•  A stochastic system has a behaviour that depends on a stochastic process, i.e. a

sequence of non-deterministic events that evolve over time or space.

•  Here we assume that the nondeterministic events may be modelled by random
variables specified by some probability distribution.

•  At any time, the system is characterised by its state, i.e. the value of the set of
state variables that completely specify it.

•  Whenever an event occurs, it causes some (possibly empty) change of the sistem
to a new state.

•  Such a system can thus be modelled by an automaton, defined informally as

–  A set of states, some of which might be the initial states

–  A set of transitions, between two states, caused by some event.

•  The behaviour of the system is modelled by subjecting the automaton to a set of
“external” events, i.e. those that are independent of the system.

Note: In general an automaton produces an output. Here we assume that the output of interest,
may be obtained from the state variables,

Random Variables; (Monte Carlo) Simulation 10

25 November 2016

Simulation of Stochastic Systems
•  The simulation of a system, i.e. the behaviour of the corresponding automaton,

may be specified through the following generic algorithm, where
–  R = <r1, r2, …, rm> is a sequence of “requests” (external to the system)
–  S = <s0, s1, …, sn> is a sequence of states

•  Function next_event simply detects the event occurring next, but does not affect
neither the sequence of requests nor the state of the automaton.

•  Function update uses this event to change the state of the automaton, and
possibly remove requests from the sequence.

•  The new state is added to the sequence of states, and the loop proceeds until an
end event is detected.

Random Variables; (Monte Carlo) Simulation 11

function S = simulate(s,R);
 e = “dummy”; S = [];
 while e != “end”
 e = next_event(s,R);
 [s,R] = update(s,R,e);
 S = [S,s];
 endwhile

endfunction

25 November 2016

Example: Random Walk
•  This generic algorithm must be instantiated by specifying the adequate next_event

and update functions. We illustrate this with a simple example: a random walk,
i.e. the movement of an object composed of a sequence of random steps.

•  In particular we will consider the steps to be either forward or backwards, occurring
with equal probability, and causing the position of the object to move, respectively,
+1 or -1 positions from its current position.

•  State Variables:
–  The state s consists a single integer variable, stating the position of the object.
–  We may assume that the initial state corresponds to s = 0.

•  Events
–  There are two types of “real” events, move_forward and move_backwards.

In addition we create a virtual event “end” to stop the simulation.

•  Transitions
–  Whenever a move_forward event occurs, s increases by 1.
–  Whenever a move_backwards event occurs, s decreases by 1.
–  When the virtual end event occurs, the similation finishes.

Random Variables; (Monte Carlo) Simulation 12

25 November 2016

Example: Random Walk
•  For convenience, we may encode both the requests to steps forward and

backwards and the corresponding events by integers +1 and -1, respectively, and
the end event by integer 0.

•  Moreover, the sequence of n events is encoded as an n element array, whose
elements are the numbers +1 and -1, generated with equal probability.

•  This can be done with function generate_random_walk_events

Random Variables; (Monte Carlo) Simulation 13

function R = generate_random_walk_events(n)
 R = zeros(1,n+1);
 for i = 1:n
 R(i) = 2*(round(rand())-0.5)
 % 0/1 with probability = 0.5
 endfor
 R(n+1) = 0;

endfunction

25 November 2016

Example: Random Walk
•  Function next_event detects the type of the next event, which in this case is simply

the value of the first element of the sequence of events, as shown

•  In this simple example, function update simply removes the event from the
sequence, and applies it to the state variable s.

•  These functions can be used to obtain a simulation of a random walk process, as
shown below

Random Variables; (Monte Carlo) Simulation 14

function [s,E] = update(s,R,e);
 R = R(2:end)
 s = s+e

endfunction

function e_type = next_event(s,R)
 e = E(1)

endfunction;

function S = simulate_random_walk(n);
 R = generate_random_walk_events(n);
 S = simulate(s,E);

endfunction

25 November 2016

Monte Carlo Simulation
•  A simple simulation does not provide might not provide sufficient information for

the characterization of the behaviour of a system. Many of these characteristics do
not have a deterministic value but only a probabilistic one.

•  In this case, many different and independent simulations may be performed so that
such statistic values (e.g. averages and variances) may be collected from the
results obtained in the different simulations.

•  This is the basic idea behind Monte Carlo Simulation:

–  Run a sufficient number of simulations

–  Aggregate the values of interest from the results of the different simulations

•  In general these should be sufficient to guarantee the significance of the results,
but this topic is beyond the scope of this course.

•  Of course if we are interested in some particular feature we may adapt the
simulation function, so as to simply provide the results we are interested in.

Random Variables; (Monte Carlo) Simulation 15

25 November 2016

Monte Carlo Simulation: Random Walk
•  For a random walk, we may be interested in obtaining the probability that

distance d from the initial position is reached in n (or less) steps.
•  This probability can be approximated by the frequency in which this occcurs, given

a sufficient large number of runs of the random_walk process.
•  We may thus perform ns simulations and count the number ps of those that

reached the distance d in n steps (or less), as shown below.

•  Here we assumed a function check that analyses the sequence S of states
generated in a simulation and detects whether a distance ± d was reached. Of
course, it would be more efficient to stop a simulation as soon as distance ±d is
reached and return a Boolean indicating whether this was the case.

•  This is left as an exercise.
Random Variables; (Monte Carlo) Simulation 16

function p = random_walk_reach_probability(n,d)
 ns = 1000; ps = 0;
 for i = 1:ns
 S = simulate_random_walk(n,d);
 if check(S,d) ps = ps+1; endif
 endfor
 p = ps/ns;

endfunction

25 November 2016

Example: Queuing Systems
•  Queuing systems are systems relying on the occurrence of requests that are to be

serviced, if possible, by a number of existing resources.

•  Examples of these systems are everywhere, ranging from traditional supermarket
tills or petrol stations, to more “present day” call centres or computers servers.

•  Broadly, these systems are characterised by the number of servers that are
available (in parallel), the queuing discipline used (i.e. a simple queue or different
queues, the maximum size of a queue – if full, a new request is rejected) and the
the service provided. In particular, the service time is usually characterised by
some probability distribution.

•  The behaviour of these queuing systems depends of course on the arrivals of
requests that can also be characterised by some probability distribution. The
simulation of these systems can use the previous scheme, taking into account that

–  Requests are external events, that queue to be serviced
–  Whenever a server is free, a request from a queue is moved to a server;
–  Whenever a service is completed, a terminating event occurs, denoting that

the corresponding server became free.

Random Variables; (Monte Carlo) Simulation 17

25 November 2016

Example: Queuing Systems
•  To simulate such queuing systems, we must model the state of the system and the

events it is subject to. There are several possible variants of these systems so we
will consider the following

Example:
•  A system with a single server and accepting one request on the waiting. If more

requests arrive, they are rejected. We also assume
•  Arrivals events follow an exponential distribution with mean time m between

arrivals m (for example, m = 5 secs)
•  Services are processed in some constant time, p (for example, p = 4 secs)

•  For this problem, we are interested in studying:
a.  What percentage of time the server is busy
b.  The percentage of requests that are rejected.

•  To study this system, we must of course specify
a.  The type of events to be considered
b.  A model of the system, namely the variables that represent a current state

of the system, as well as well as additional information about the past
behaviour used to answer the questions posed.

Random Variables; (Monte Carlo) Simulation 18

25 November 2016

Example: Queuing Systems
State Variables:

•  We model the state of the system by a structure s, with the following fields
–  s.busy – a Boolean denoting whether the server is busy
–  s.finish_t – the time the server will finish the service (when busy is 1)
–  s.waiting – a Boolean denoting whether there is a request already waiting
–  s.arrival_t – the time the waiting request has arrived (when waiting is 1)
–  s.n_accepted – the number of requests accepted so far
–  s.n_rejected – the number of requests rejected so far
–  s.working_t – the time the server has been busy so far

Note: The 3 last fields of the last state answer the questions we are interested in.

Events:

•  In this case, events will be of three types, in addition to a virtual end event:
–  arrival – a request is transferred to the queue of the system
–  start – a request in the queue is transferred to the server
–  term – a service terminates being served

Random Variables; (Monte Carlo) Simulation 19

25 November 2016

Example: Queuing Systems
•  We simulate the system by means of a function simulate_simple_queue, that

will use the previous functions adapted for the mentioned encodings of the current
state and the request sequence that

•  The simulation itself is similar to that explained before, repeated below

Random Variables; (Monte Carlo) Simulation 20

function S = simulate(s,R);
 e = “dummy”;
 while e != “end”
 e = next_event(s,R);
 [s,R] = update(s,R,e);
 S = [S,s];
 endwhile

endfunction

function [p_rjct,p_busy] = simulate_simple_queue(n,m);
 R = generate_exp_arrivals(n,m);
 s = initial_state();
 S = simulate(s,R);
 acpt = S(end).n_accepted;
 rjct = S(end).n_rejected;
 p_rjct = rjct/(acpt+rjct);
 p_busy = S(end).working_t / S(end).finish_t;

endfunction

25 November 2016

Example: Queuing Systems
Generation of the Sequence of Requests:

•  We will study this system for an interval of time that should be large enough to
gather significant statistical information.

•  For example we may assume that 1000 requests are a sufficient large number,
and so create a sequence of 1000 requests, each stored with the time in which it is
made, with the following program

Random Variables; (Monte Carlo) Simulation 21

function R = generate_exp_arrivals(n,m);
% n should be a number large enough
% m is the mean time
 R(1) = 0;
 for i = 2:n_repeat
 delta = exp_inv(1/m); % exponential distribution
 R(i) = R(i-1) + delta;
 endfor;

endfunction

25 November 2016

Example: Queuing Systems
•  For this problem, the selection of the next_event can be done as follows:

Random Variables; (Monte Carlo) Simulation 22

function e = next_event(s,R)
 if s.busy
 if length(R) > 0 && s.finish_t > R(1) e = 1; %“arrival”
 else e = 3; % “term”
 endif
 else
 if ! s.waiting % && ! s.busy
 if length(R) == 0 e = 4; % “end”
 else e = 1; % “arrival”
 end
 else % s.waiting && ! s.busy
 e = 2; % “start
 endif
 endif

endfunction

25 November 2016

Example: Queuing Systems
Generation of the Sequence of Requests:

•  We may now define the function update that changes the state of the system, and
possibly, the state of the request sequence.

•  The function may be implemented by means of different functions, one for each of
the three type of events (arrival, start and term) that are detected

Random Variables; (Monte Carlo) Simulation 23

function [s,R] = update(s,R,e);
 if e == 1 % “arrival”
 [s,R] = arrival(s,R);
 elseif e == 2 % “start”
 [s,R] = start_service(s,R);
 else % “term”
 [s,R] = term_service(s,R);
 endif

endfunction

25 November 2016

Example: Queuing Systems
Event Processing

Arrivals:

–  If the event is an arrival, a request is transferred from the request sequence to the
queue maintained by the system.

–  Upon an arrival event, either the request is accepted or rejected (if the queue is
full). Otherwise the time of arrival is recorded and the number of accepted / rejected
messages is updated.

Random Variables; (Monte Carlo) Simulation 24

function [s,R] = arrival(s,R);
 if s.waiting == 1
 s.n_rejected = s.n_rejected + 1;
 else
 s.waiting = 1;
 s.arrival_t = R(1);
 s.n_accepted = s.n_accepted + 1;
 end;
 R = [R(2:end)];

endfunction

25 November 2016

Example: Queuing Systems
Event Processing

Starts:
–  If the event is an start, this means the server is not busy, and it must become so.
–  Moreover, the queue becomes empty.
–  The start of the service is either the time when the last service has terminated, or

the time the request arrived into the queue (both recorded in the current state).
–  The expected service time should be added to the start time to become the current

finish time (in this case we use a constant time = 4), which updates the finishing
time and the overall working time of the server

Random Variables; (Monte Carlo) Simulation 25

function [s,E] = start_service(s,E);
 s.busy = 1;
 s.waiting = 0;
 start_time = max(s.finish_t, s.arrival_t);
 service_time = 4;
 s.finish_t = start_time + service_time;
 s.working_t = s.working_t + service_time;

endfunction

25 November 2016

Example: Queuing Systems
Event Processing

Terms:
•  If the event is a term, which means that the busy state variable has been true, then

all that is required is to change the value of this busy variable.

Random Variables; (Monte Carlo) Simulation 26

function [s,R] = term_service(s,R);
 s.busy = 0;

endfunction

25 November 2016

Example: Queuing Systems
Simulation
•  To start a simulations, it is still necessary to define the initial state

•  With all the previous function in place, all that is needed to know the percentage of

requests that are rejected, as well as the percentage of time the server is busy is
obtained with the call

Random Variables; (Monte Carlo) Simulation 27

>> [p_rej,p_busy] = simulate_simple_queue(n,m);

function s = initial_state();
 s.busy = 0;
 s.finish_t = 0;
 s.waiting = 0;
 s.arrival_t = 0;
 s.n_accepted = 0;
 s.n_rejected = 0;
 s.working_t = 0;
endfunction

