
Graphs: Basic Concepts

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semester 2016/2017

Graphs: Basic Concepts 2 December 2016 1

Graphs
•  Graphs are a very common data structure that is useful to model a number of

“network” applications, where a number of “actors” have direct connections
between (some of) them.

•  They range from networks of physical services (telecommunications, roads, water
distribution) to more virtual services (e.g. social networks) or even to more abstract
models (neighbouring countries, teams playing in several competitions, …).

•  Formally, a graph is defined as a pair <V,E> where

–  V is a set of vertices (or nodes)

–  E is a set of edges (or arcs), each connecting two of the vertices

•  Two characteristics of the edges, weights and direction, might be considered,
leading to different types of graphs:

–  Weighted Graphs – Each edge has a weight, usually a positive number

–  Directed Graphs – Each edge has a direction, connecting one vertice to
another, but not the other way round

Graphs: Basic Concepts 2 December 2016 2

Graphs

Example:

•  An unweighted, undirected graph

•  A weighted, undirected graph

•  A weighted, directed graph

a
b

c

e
d

g
f

7 8

5 7

15

11

9 8

6

9 5

•  A path is a sequence of connected vertices.

–  Example: Path: a à b à e à g

–  Note: A path is directional, even if the underlying graph is not.

•  A cycle is a path starting and ending in the same vertex.

–  Example: Cycle: a à b à d à a

Graphs: Basic Concepts 2 December 2016 3

Graphs

•  Two nodes are adjacent (or neighbours) if
there is an edge between them.

–  Example: connect(e,f) but not connect(a,g)

•  The degree of a vertex is the number of its
adjacent vertices

–  Example: degree(e) = 5, degree(b) = 4

a
b

c

e
d

g
f

•  A graph ordering is the assignment of a total order to the nodes of the graph,
(i.e. the assignment of values 1..n to the n nodes of a graph)

–  Example: O = a < b < c < d < e < f < g
•  The width of a node given a graph ordering, is the number of adjacent nodes

lower in the ordering.
–  Example: width(e,O) = 3 , i.e. nodes b,c,d are lower in O

•  The width of a graph given a graph ordering, is the maximum width of its
nodes given that ordering.

–  Example: width(G,O) = 3 , since e is the node with highest width in O
•  The width of a graph is the minimum width of the graph over all its orderings.

Graphs: Basic Concepts 2 December 2016 4

Properties of Graphs
•  In general, given a graph, there are several problems that may be considered to

compute some properties of the graphs, such as:
–  Connectedness: Is there a path connecting any two vertices of a graph?
–  What is the shortest path (number of edges, sum of the edges weights)

between any two vertices?
–  What is the width of a graph?
–  Are there cycles in the graph, or is it a tree (i.e. with a unique path between

two vertices)?
•  Note: A cycle has the topology of a tree iff it has width 1

–  What is the shortest spanning tree?
–  Are there Hamiltonian cycles in the graph (including all vertices only once –

except the initial/final vertex). Which one(s) is the shortest?
–  Are there cliques in the graph - subset of the graph where any two nodes are

adjacent). Which one(s) is maximal (have more nodes).
–  How many colours are needed to colour a graph, such that two adjacent

vertices have different colours?

Graphs: Basic Concepts 2 December 2016 5

Properties of Graphs
•  The problems above, and many others, are typically posed in many applications,

and so a number of algorithms have been studied to solve them.

•  But before studying some of these algorithms, it is important to adopt a
representation (or encoding) for the implementation of a graph.

•  Here we will present the two most common encodings:
–  Adjacency matrix.
–  Adjacency lists.

•  The adjacency matrix is possibly the most intuitive way of implementing a graph.
Given a graph with n vertices and some graph ordering, the adjacency matrix is a
square n × n Boolean matrix G, whose elements Gi,j contain information about the
edges between nodes i and j.

–  In an unweighted graph, the elements are Booleans
–  In a weighted graph, the elements are the weights
–  In a undirected graph the matrix is symmetric, otherwise it is usually

asymmetric.

Graphs: Basic Concepts 2 December 2016 6

Graphs

Example: a
b

c

e
d

g
g

7 8

5 7

15

11

9 8

6

9 5

Graphs: Basic Concepts 2 December 2016 7

•  The adjacency matrix is a very inefficient representation of sparse graphs, i.e. where
only a “few” of the potential arcs are presented. In this case, of the n2 elements of the
matrix only a (small) fraction of them are non-zero.

•  To avoid this waste of space, one may adopt an adjacency lists, i.e. a set of lists
each representing, for each node, the information about its neighbours (taking into
account the directedness).

•  The space required is thus O(|E|) which is much less than O(|V2|) for sparse graphs.

Properties of Graphs

a
b

c

e
d

g
f

7 8

5 7

15

11

9 8

6

9 5

Graphs: Basic Concepts 2 December 2016 8

Types of Algorithms
•  As we will see, some of these problems require algorithms whose asymptotical

complexity is polynomial on n, the input size of the problem. Assuming that reads
from and writes to memory are basic operations, polynomial algorithms require
O(nk) basic operations, where k is an integer, typically small.

•  Problems that can be solved by polynomial algorithms are said to be in class P.

•  Other algorithms have exponential complexity, i.e. require O(kn) basic operations.
Problems that can only be solved by these are said to be in class NP.

•  Take a computer where each elementary operation takes 1 nsec. The following
table shows the “practical” consequences of the problem being in P or in NP. Here
the size n is the size of an input vector or matrix, or the size |V| or |E| of a graph.

n1: Search in a vector; n2: Sorting (naïf) a vector; n3: Matrix multiplication

Graphs: Basic Concepts

n	 10	 20	 30	 40	 50	 60	 70	
n1	 10	nsec	 20	nsec	 30	nsec	 40	nsec	 50	nsec	 60	nsec	 70	nsec	
n2	 100	nsec	 400	nsec	 900	nsec	 1.6	µsec	 2.5	µsec	 3.6	µsec	 4.9	µsec	
n3	 1	µsec	 8	µsec	 27	µsec	 64	µsec	 125	µsec	 216	µsec	 343	µsec	
2n	 1	µsec	 1	msec	 1	sec	 18	min	 13	days	 37	years	 37	K	years	

2 December 2016 9

Connectedness of Graphs
Problem (Connectedness): Check whether a graph G is connected.

•  The definition of connectedness of a graph depends on its type:

–  An undirected graph is connected if there is a path between any two nodes
of the graph.

–  A directed graph is strongly connected is there is a path between any two
nodes of the graph, respecting the direction of the its arcs.

–  A directed graph is weakly connected is there is a path between any two
nodes of the corresponding undirected graph.

•  Here we will study the case for the undirected graphs, which is easier to decide,
since paths (being reflexive, symmetric and transitive) create classes of
equivalence.

•  We will thus present an algorithm to check the connectedness of undirected
graphs, by checking whether all its nodes are n the same equivalence class.

Graphs: Basic Concepts 2 December 2016 10

Properties of Graphs

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

In = []; Fr = [a]; Out = [b,c,d,e,f,g,h,i,j,k]

-  NewFr = [b,c,d]; NewOut = [e,f,g,h,i,j,k]

In = [a]; Fr = [b,c,d]; Out = [e,f,g,h,i,j,k]

-  NewFr = [g,h,e,f]; NewOut = [i,j,k]

In = [a,b,c,d]; Fr = [g,h,e,f]; Out = [i,j,k]

-  NewFr = [i,j]; NewOut = [k]

In = [a,b,c,d,g,h,e,f]; Fr = [i,j]; Out = [k]

-  NewFr = [k]; NewOut = []

In = [a,b,c,d,g,h,e,f,i,j]; Fr = [k]; Out = []

-  NewFr = []; NewOut = []

In = [a,b,c,d,g,h,e,f,i,j,k]; Fr = []; Out = []

+

+

+

+

+

Graphs: Basic Concepts 2 December 2016 11

Properties of Graphs

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

In = []; Fr = [a]; Out = [b,c,d,e,f,g,h,i,j,k]

-  NewFr = [b,d]; NewOut = [c,e,f,g,h,i,j,k]

In = [a]; Fr = [b,d]; Out = [c,e,f,g,h,i,j,k]

-  NewFr = [g,e,f]; NewOut = [c,h,i,j,k]

In = [a,b,d]; Fr = [g,e,f]; Out = [c,h,i,j,k]

-  NewFr = [i,j]; NewOut = [c,h,k]

In = [a,b,d,g,e,f]; Fr = [i,j]; Out = [c,h,k]

-  NewFr = [k]; NewOut = [c,h]

In = [a,b,d,g,e,f,i,j]; Fr = [k]; Out = [c,h]

-  NewFr = []; NewOut = [c,h]

In = [a,b,d,g,e,f,i,j,k]; Fr = []; Out = [c,h]

+

+

+

+

+

Graphs: Basic Concepts 2 December 2016 12

Properties of Graphs
•  The informal algorithm presented can be implemented as the following function:

•  Set In is initialised to empty, a node is chosen arbitrarily to initialise set Fr (here we
chose node 1), and the others to initialise Out. All sets are represented as vectors.

•  The iterations proceed while the frontier (set Fr) is not empty.
•  In every iteration, the new frontier (NewFr) and the remaining nodes (NewOut) are

computed. The previous frontier is added to set In, and the frontier Fr is updated.
•  After the last iteration, the connectedness is equated to all nodes being in set In.

function [b,In] = connected(G);
 In = []; Fr = [1]; Out = 2:size(G,1);
 while length(Fr) > 0
 % move all the nodes from Out to
 % - NewFr, if they have a neighbour in In;
 % - NewOut, otherwise
 ...
 In = [In,Fr]; Fr = NewFr; Out = NewOut;

 endwhile
 b = (length(In) == n);

endfunction

Graphs: Basic Concepts 2 December 2016 13

Properties of Graphs
•  The core of the algorithm is the construction of sets NewFr and NewOut in every

iteration (again implemented as vectors).

–  Both sets NewFr and NewOut start being empty
–  Then every node in Out is checked for a neighbour in the frontier (set Fr).
–  If there is one such node, and if not done so before, the node is inserted in set

NewFr. In any case, the node is marked as inserted.
–  If no neighbour is found , the out node is added to set NewOut.

 % move all the nodes from Out to NewFr or NewOut
 NewFr = []; NewOut = [];
 for j = 1:length(Out)
 inserted = 0;

 for i = 1:length(Fr)
 if G(Fr(i),Out(j))
 if !inserted NewFr = [Out(j),NewFr]; endif;
 inserted = 1;

 endif;
 endfor
 if !inserted NewOut = [Out(j),NewOut] endif;
 endfor;

Graphs: Basic Concepts 2 December 2016 14

Properties of Graphs
•  The complete function is shown bellow (comments removed):

function [b,In] = connected(G);
 In = []; Fr = [1]; Out = 2:size(G,1);
 while length(Fr) > 0
 NewFr = []; NewOut = [];
 for j = 1:length(Out)
 inserted = 0;

 for i = 1:length(Fr)
 if G(Fr(i),Out(j)) < Inf
 if ! inserted NewFr = [Out(j),NewFr]; endif;
 inserted = 1;

 endif;
 endfor
 if ! inserted NewOut = [Out(j),NewOut]; endif;
 endfor;
 In = [In,Fr]; Fr = NewFr; Out = NewOut;

 endwhile
 b = (length(Out) == 0);

endfunction

Graphs: Basic Concepts 2 December 2016 15

Properties of Graphs
•  An discussed, an important issue in algorithm design is to study their complexity,

which can be considered for for the best, worse or average case.

•  In this case the time complexity is similar for all cases (if the graph is connected).
In fact the algorithm performs several iterations that compare nodes in the frontier
with nodes outside the test.

•  Since a node can only be in the frontier (Fr set) during one iteration (in the next
one it is moved to the In set), the pairs < i, j > are never repeated, nor reversed: (if
in some iteration node i is in Fr and j is in Out, then it will never be the case that in
subsequent iterations j is in Fr and I in Out).

•  Hence, being n the number of vertices in the graph (n = |V|) the number of
comparisons is exactly n*(n-1)/2.

 while length(Fr) > 0
 ...
 for j = 1:length(Out)
 ...

 for i = 1:length(Fr)
 if G(i,j)
 ...

Graphs: Basic Concepts 2 December 2016 16

Properties of Graphs
•  In every iteration “simple” operations are performed, namely

–  adding a value to a vector, as in

•  NewFr = [j,NewFr] and NewOut = [j,NewOut]

–  appending two vectors, as in

•  In = [In,Fr]

•  If suitably implemented, these operations can be performed with a small number of
elementary operations (reads from and writes int memory).

•  Hence, the asymptotical complexity of this algorithm is quadratic on the number of
nodes of the graph (i.e. the algorithm is in P)

O(|V|2)

•  Notice that for graphs represented by adjacency lists, only pairs in the lists would
be checked (instead of G(i,j) checks), and the complexity would be O(E), which
is much better in the case of sparse graphs.

Graphs: Basic Concepts 2 December 2016 17

