Lab. 3 Functions; WHILE loops

Do the exercises below in the Octave IDE. You should only use assignments operations with arithmetic expressions excluding pre-defined MATLAB functions. Also use scripts to avoid "too much typing".

1. Exponential Function

As you know, the exponential function can be computed with the series

 $e(x) = 1 + x + x^2/2! + x^3/3! + x^4/4! + x^5/5! + \dots$

Specify function expo(x) that implements an approximation of this function and compare it with the predefined function exp/1.

Note: This series converges very quickly (for small values of x) so assess the effect of truncating it with a limited number of terms, either using a fixed number of steps (using a FOR instruction) or a variable number depending on the approximation achieved (i.e. when the first term not considered is less than a certain small value, e.g. 10^{-7}).

2. Logarithm of 2

As you know, the series below

 $\ln(2) = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + \dots$

converges (slowly) to ln(2). Implement the constant function ln2() truncating it in the first term with absolute value less than a certain small value, e.g. 10^{-7} . Since the series is alternate, the approximation error less than the first neglected term

3. Sine and Cosine

a) Implement function seno(x) (x in radians radianos; assume $0 \le x \le pi/2$) which approximates the sin/1 function through the truncated series

 $seno(x) = x - x3/3! + x5/5! - x7/7! + x9/9! - \dots$

- b) Adapt the function to specify function seng(x) that takes the argument in degrees.
- c) Do the same for the cosine function approximated by the truncated series

 $coseno(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$

4. Finding values in an array

- a) Specify function find_d(x, v) that returns the position of the 1st occurrence of value x in array V. If there is no such position return 0.
- b) Generalise the previous function to find kd(x, v, k) that returns the position of the kth occurrence of value x in array V. If there is no such position return 0.

Examples: Given v = [1 2 4 7 3 9 9 0 1 3 7 1 6]

find_d(7,V) -> 4	find_kd(7,V,1) -> 4
find_d(9,V) -> 6	find_kd(7,V,2) -> 11
find_d(6,V) -> 13	find_kd(7,V,3) -> 0
find_d(8,V) -> 0	find_kd(8,V,1) -> 0

c) Adapt the codes to implement functions find_r(v, v, k) and find_kr(v, v, k) that returns the indices of the values, but counting backwards.

Examples: Given v = [1 2 4 7 3 9 9 0 1 3 7 1 6]

find_r(7,V) -> 11	find_kr(7,V,1) -> 11
find_r(9,V) -> 7	find_kr(7,V,2) -> 4
find_r(6,V) -> 13	find_kr(7,V,3) -> 0
find_r(8,V) -> 0	find_kr(8,V,1) -> 0