
Lab. 3 Functions; WHILE loops

Do the exercises below in the Octave IDE. You should only use assignments operations with
arithmetic expressions excluding pre-defined MATLAB functions. Also use scripts to avoid “too
much typing”.

1. Exponential Function

As you know, the exponential function can be computed with the series
e(x) = 1 + x + x2/2! + x3/3! + x4/4! + x5/5! + ...

Specify function expo(x) that implements an approximation of this function and compare it with the
predefined function exp/1.
Note: This series converges very quickly (for small values of x) so assess the effect of truncating it
with a limited number of terms, either using a fixed number of steps (using a FOR instruction) or a
variable number depending on the approximation achieved (i.e. when the first term not considered
is less than a certain small value, e.g. 10-7).

2. Logarithm of 2

As you know, the series below
ln(2) = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ...

converges (slowly) to ln(2). Implement the constant function ln2() truncating it in the first term
with absolute value less than a certain small value, e.g. 10-7. Since the series is alternate, the
approximation error less than the first neglected term

3. Sine and Cosine
a) Implement function seno(x) (x in radians radianos; assume 0 £ x £ pi/2) which

approximates the sin/1 function through the truncated series
seno(x) = x – x3/3! + x5/5! – x7/7! + x9/9! - ...

b) Adapt the function to specify function seng(x) that takes the argument in degrees.
c) Do the same for the cosine function approximated by the truncated series

coseno(x) = 1– x2/2! + x4/4! – x6/6! + x8/8! - ...

4. Finding values in an array
a) Specify function find_d(x, V) that returns the position of the 1st occurrence of value x in

array V. If there is no such position return 0.
b) Generalise the previous function to find_kd(x, V, k) that returns the position of the kth

occurrence of value x in array V. If there is no such position return 0.

Examples: Given V =[1 2 4 7 3 9 9 0 1 3 7 1 6]
 find_d(7,V) -> 4 find_kd(7,V,1) -> 4
 find_d(9,V) -> 6 find_kd(7,V,2) -> 11
 find_d(6,V) -> 13 find_kd(7,V,3) -> 0

find_d(8,V) -> 0 find_kd(8,V,1) -> 0

c) Adapt the codes to implement functions find_r(v, V, k) and find_kr(v, V, k) that
returns the indices of the values, but counting backwards.

 Examples: Given V =[1 2 4 7 3 9 9 0 1 3 7 1 6]
 find_r(7,V) -> 11 find_kr(7,V,1) -> 11
 find_r(9,V) -> 7 find_kr(7,V,2) -> 4
 find_r(6,V) -> 13 find_kr(7,V,3) -> 0

find_r(8,V) -> 0 find_kr(8,V,1) -> 0

