
Lab. 7 Efficient Array Sorting

For the following exercises read, into arrays V_x, the data stored
in files “dadosX.txt” available in the web site, as done in the
previous class)

1. Adapt Merge Sort

Adapt the implementation of Merge Sort presented in the slides of class 7, by including an extra
Boolean parameter dir specifying if the sorting is done in increasing / decreasing order (dir = 1
or 2, respectively). Also return the number c of comparisons between elements of the vectors. Use
signature

function [S, c, x] = merge_sort(V, dir)

Check the correctness and efficiency of your implementation with vectors V_x.

2. Adapt Quick Sort

Adapt the implementation of Quick Sort presented in the slides of class 7, by including an extra
Boolean parameter dir specifying if the sorting is done in increasing / decreasing order (dir = 1
or 2, respectively). Also add to the results a) the number a of accesses to the elements of the
vector that were considered, and b) the number s of swaps that were made in elements of the array.
Use the signature (starting with lo = 1 and hi = n)

function [S, a, s] = quick_sort(V, lo, hi, dir)

Check the correctness and efficiency of your implementation with vectors V_x.

3. Assess efficiency of Quick Sort and Merge Sort
Check the efficiency (and correctness) of your implementation of the previous functions if the input
vectors are already sorted either in increasing or decreasing order.

4. Compare efficiency of Quick Sort and Merge Sort
Compare the results obtained in the previous item, with those obtained with Bubble Sort, as done in
the previous lab class.

