Lab. 10 - Graph Problems (1)

10.1 Graph Reading

Consider the undirected weighted graphs specified in the zip file graphs.zip, with the following format

nn na ni nj wij

where the first line indicates the number **nn** of nodes and the number **na** of arcs, and the subsequent lines specify all the **na** arcs, each by a triple <**ni**, **nj**, **wij**> where **ni** and **nj** are the node identifiers and **wij** the weight of the connecting arc.

Specify a function with signature

function M = graph_load(filename)

that reads a graph with the above format from a file with name filename, and returns the adjacency matrix M of the represented graph.

Note 1: The files format assume that the nodes are numbered from 1 no nn.

Note 2: The graphs are (implicitly) symmetric, and so for any arc between nodes **i** and **j** there is an arc between nodes **j** and **i** with the same weight.

10.2 Subgraph Projection

Consider an undirected graph specified by its adjacency matrix M. Implement a function with signature

```
function S = subgraph_projection(M, Nodes)
```

that returns the adjacency matrix ${\bf S}$ of the subgraph of M, obtained by its projection to the nodes ${\bf Nodes}$

Note: Notice that if Nodes(i) = j, then node j in graph M corresponds to node i in the subgraph S.

10.3 Connected Subgraph

Consider an undirected graph specified by its adjacency matrix M. Specify a function with signature

function [C, C_Nodes, R, R_Nodes] = connected_subgraph(M)

that returns the subgraph, C, that corresponds to the connected component that contains nodes C_Nodes (including node 1). The remaining graph, and the corresponding mapping, should also be returned as R and R_Nodes , respectively.

Note 1: Adapt function connected from the slides of class 9 to obtain the nodes of the subgraph, and use function subgraph_projection, above, to obtain the subgraphs and corresponding mappings.

Note 2: Test this function with the graphs in files "graph_6_X.txt"

10.4 Graph Printing

Consider an undirected graph specified by its adjacency matrix M. Specify a function with signature

function graph_store(M, filename)

that prints the graph **M** in a file with the given **filename**, with the format explained in question 1.

Note: Test this function with the graphs obtained in the previous question.