
Functions; IF and FOR instructions

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semestre 2017/2018

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

1

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

2

Scripts
• In very abstract terms, we have defined a program as a sequence of instructions

(implementing some algorithm) that take some data as input as produce an output.

• Moreover, we have seen that the angle between two vectors (of the same kind, both
row or columns vectors) can be computed by the following sequence of instructions.

• Assuming that the assignment instructions V1 = …; and V2 = ...; correspond to the
input of data the above set of instructions can be made as program, producing the
angle angR as the output.

>> V1 = ...;
>> V2 = ...;
>> m1 = sqrt(V1*V1’);
>> m2 = sqrt(V2*V2’);
>> m12 = V1*V2’;
>> angR = acos(m12 / (m1*m2));
>> andG = 180* angR / pi;

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

3

Scripts

• This program could be implemented as a script in MATLAB.

• In this case, all the intermediate computation steps can be abstracted away from the

user. To obtain the angle between two vectors, she only needs to enter the vectors,

and invoke the script to obtain the result. For example:

>> V1 = ...;
>> V2 = ...;
>> m1 = sqrt(V1*V1’);
>> m2 = sqrt(V2*V2’);
>> m12 = V1*V2’;
>> angR = acos(m12 / (m1*m2));
>> andG = 180* angR / pi;

% input data: V1 and V2
m1 = sqrt(V1*V1’);
m2 = sqrt(V2*V2’);
m12 = V1*V2’;
angR = acos(m12 / (m1*m2));
andG = 180* angR / pi

angle.m

>> V1 = [1, 1];
>> V2 = [-1 1];
>> angle
angG = 90

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

4

Scripts vs. Functions
• However, this approach to implement programs through scripts suffers from two

major problems:

• If the vectors have been assigned to other variables, say P and Q, the script
requires that they are first assigned to variables V1 and V2.

• This may of course be a problem, as the variables V1 and V2 might have
been already assigned with other relevant information:

• The variables used in the script (m1, m2 ,…) may have also been used to denote
other relevant information to the program.

• Running the script will replace such relevant information by the intermediate
values computed during the script execution.

• In conclusion, implementing programs as scripts does not separate the computations
inside the script from those outside the script, sharing the same variable space and
so allowing undesirable interference.

• What is needed is a mechanism that clearly separates the different computations and
this is achieved by using (user-defined) functions.

28 September 2018 2: Functions; IF and FOR instructions in MatLab

Pedro Barahona

5

Functions

• Before any formalisation, we illustrate the use of a function in this example.

• If during the computation the vectors of interest have been specified in variables U1
and U2, all that is needed to compute their angle is to call

with the guarantee that no variables in the rest of our programs would be affected,

except of course, variable ang that is assigned the value of the angle.

function angG = angle(V1, V2)
% this function computes the angle between
% vectors V1 and V2, both of the same kind

m1 = sqrt(V1*V1’);
m2 = sqrt(V2*V2’);
m12 = V1*V2’;
angR = acos(m12 / (m1*m2));
angG = 180* angR / pi;

end

>> ang = angle(U1,U2)
ang = 90

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

6

Functions
• Thus, user-defined functions very much like pre-defined functions.

• They are called by invoking their name, together with their arguments (in terms of the
variables used in the context of the call), and assigning the result to some other
variable of our choice.

• Like with scripts, user-defined functions must be defined and made accessible.
• They must be defined in a text file with the same name and extension “.m”.
• They are accessible, if the file is stored in the working directory.

function angG = angle(V1, V2)
% this function computes the angle between
% vectors V1 and V2, both of the same kind

m1 = sqrt(V1*V1’);
m2 = sqrt(V2*V2’);
m12 = V1*V2’;
angR = acos(m12 / (m1*m2));
angG = 180* angR / pi;

end

angle.m

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

7

Functions

• A function is composed of the following elements

• The signature

• The documentation

• The body

• The end statement

function angG = angle(V1, V2)
% this function computes the angle between
% vectors V1 and V2, both of the same kind

m1 = sqrt(V1*V1’);
m2 = sqrt(V2*V2’);
m12 = V1*V2’;
angR = acos(m12 / (m1*m2));
angG = 180* angR / pi;

end

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

8

Functions

• The signature is composed of

• The key word function

• The result (followed by a = sign)

• The name of the function (the same as the name of the file containing it)

• The parameters, within (round) brackets and separated by commas

• A function may return no result.

• For example, a function may be used to write some text in the terminal and that

is all it must do – no value is returned as a result.

• A function may have no parameters (is a constant), in which case, the parentheses

may be ommitted.

• For example we may want to use the number chi, i.e. the golden ratio number,

chi = (1+sqrt(5))/2 and define it as a function making it available, as pi and e are

available.

functionfunction angG =function angG = anglefunction angG = angle(V1, V2);

28 September 2018 2: Functions; IF and FOR instructions in MatLab

Pedro Barahona

9

Functions

• The documentation of a function is a set of comments lines written either before or

immediately after the signature.

• It should provide an explanation of what the function is supposed to do, as clearly

and completely as possible.

• It is optional, but it is a good (mandatory…) practice to declare it

• In particular, the help command returns the function documentation.

function angG = angle(V1, V2)
% this function computes the angle between
% vectors V1 and V2, both of the same kind

...
end

>> help angle
% this function computes the angle between
% vectors V1 and V2, both of the same kind
>>

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

10

Functions
• The body of the function is the set of instructions that compute the result.

• It is thus necessary that the result declared in the signature is assigned in the body of
the function (typically it is the last instruction).

function angG = angle(V1, V2)
% this function computes the angle between
% vectors V1 and V2, both of the same kind

m1 = sqrt(V1*V1’);
m2 = sqrt(V2*V2’);
m12 = V1*V2’;
angR = acos(m12 / (m1*m2));
angG = 180* angR / pi;

end

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

11

Functions

• The execution of a function can be explained as follows:

1. The arguments of the function call are assigned to the parameters of the function

signature;

2. The body of the function is executed

3. The result identified in the function signature, and assigned during the function

execution is passed to the invoking program.

function angG = angle(V1, V2)
m1 = sqrt(V1*V1’);
...
angG = 180* angR / pi;

end

>> U1 = [1, 1];
>> U2 = [-1, 1];
>> a = angle(U1, U2)
a = 90
>>

V1 = U1
V2 = U2

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

12

Functions

• The separation between the variables spaces of the function and the program that

calls it is guaranteed,

• The variables of the function body are different from the variables in the calling

program, even if they have the same name!

• In particular function internal variables are not seen from the calling program

>> y = 7, z = triplo(5), y, a
y = 7
y = 10
t = 15
z = 15
y = 7
error: 'a' undefined near line 1 column 3

function t = triple(a)
% this function computes the triple of the argument

y = a + a
t = y + a

end

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

13

Unitary Tests
• Before start discussing the instructions that can be used (namely in the body of a

function) it is important to stress some important points.

• Functions should be coded in a clear way, documenting the instructions with
comments (after the % sign), highlighting their purpose.

• It is a known fact, that very obvious programs tend to become misterious, even
for their authors, after some time (e.g. a month) without checking them.

• To enhance the understand ability of the programs, all functions should be
documented with the documentation section in the beginning of their code.

• In the code of any non-trivial function there are calls to other functions. If something
goes wrong it is very important to understand where the bugs occur.

• Hence the need for Unitary Tests: it is very important that every function is
thoroughly tested in “isolation” (the unitary tests), before it is used in other functions.

28 September 2018 2: Functions; IF and FOR instructions in MatLab

Pedro Barahona

14

Conditional Execution - IF

• The function angle/2 that was used before as an example executes a sequence of

assignement instructions, some of them calling pre-defined functions, like sqrt/1 and

acos/1). This is a very rare situation. In most programs/functions the sequence of
instructions depends on conditions of the data being used.

• For specifying this conditional execution, all languages include an instruction: IF.

Syntax may vary for different languages so here we will use the MATLAB syntax.

• In its simplest form this instruction conditions the execution of a THEN-BLOCK.

• Very often the instructions selects one of two sequence of instructions: either the

THEN-BLOCK or the ELSE-BLOCK is executed

if <CONDITION>
THEN BLOCK

end;

if <CONDITION>
THEN-BLOCK

else
ELSE-BLOCK

end;

28 September 2018 2: Functions; IF and FOR instructions in MatLab

Pedro Barahona

15

Conditional Execution - IF

• We may illustrate the first case with a function to compute the absolute value of a

number (in fact this function already exists pre-defined, as abs/1).

• A more natural specification of this function would use the else statement

function a = absolute(x)
% this function computes the absolute
% value of its argument

a = x;
if x < 0

a = -a; % change the sign of a
end

end

function a = absolute(x)
% this function computes the absolute
% value of its argument

if x < 0
a = -x;

else
a = +x;

end
end

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

16

Conditional Execution - IF
• A more complex example: Find the (real) roots of a 2nd degree equation

• IMPORTANT: Notice the indentation – it makes the code much more readable!

function roots = equation_2(a, b, c)
% roots = equation_2(a, b, c)
% roots return the solutions of equation
% ax^2 + bx + c = 0 (assuming a != 0)

d = b^2 – 4*a*c;
if d < 0 % no solutions

roots = []; % an empty vector is returned
else

if d == 0 % one single solution
roots = [-b/(2*a)];

else % two distinct solutions
roots = [-b + sqrt(d) / /(2*a),

[-b - sqrt(d) / /(2*a)];
end

end
end

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

17

Conditional Execution - IF
• The previous example illustrates the “nesting” of if statements (if inside the if blocks).

• The code becomes more readable if one uses not a single ELSE-BLOCK but several
ELSEIF-BLOCKS.

function roots = equation_2(a, b, c)
% roots = equation_2(a, b, c)
% roots return the solutions of equation
% ax^2 + bx + c = 0 (assuming a != 0)

d = b^2 – 4*a*c;
if d < 0 % no solutions

roots = []; % an empty vector is returned
elseif d == 0 % one single solution

roots = [-b/(2*a)];
else

roots = [-b + sqrt(d) / /(2*a),
[-b - sqrt(d) / /(2*a)];

end
end

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

18

Iterative Execution - FOR
• In many cases it is necessary to repeat a block of instructions. There are several

variants to specify such repetition, and the simplest one is with a FOR statement.

• In MATLAB syntax

• This instructions specifies that the FOR-BLOCK

• is executed as many times as there are elements in the ITERATION-VECTOR;

• In each execution the ITERATION-VAR takes the value of the corresponding
element of the vector

• Note: The ITERATION-VAR is usually used in the FOR-BLOCK, although this is
not necessary

• The next examples illustrate the use of the FOR instruction.

for ITERATION-VAR = ITERATION-VECTOR
FOR-BLOCK

end;

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

19

Ranges and Vectors
• Before that we note that in MATLAB a vector can be specified as a range, that are

very often used in FOR statements

so that the vector starts with element first, and subsequent elements differ by 1, until
the last element, that should not exceed the value of stop.

• More generally, with specification

consecutive elements of the vector differ by the value of step (that can be any
number, different from zero).

• Notice that in any case the vector can be empty.

• In the first case, this happens when stop < first;

• In the second case, an empty vector is obtained if

• Step is positive and stop < first;
• Step is negative and stop > first;

V = first : stop

V = first : step : stop

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

20

Ranges and Vectors
• Some examples illustrate the specification of vectors as ranges

>> V = 1:5
V = 1 2 3 4 5

>> U = 1:2:8
V = 1 3 5 7

>> X = 8:-2:0
X = 8 6 4 2 0

>> Y = 8:-2.5:-3
Y = 8.0 5.5 3.0 0.5 -2.0

>> A = 5:1
A = [] 1x0

>> B = 5:2:1
B = [] 1x0

>> C = 1:-2:5
C = [] 1x0

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

21

Iterative Execution - FOR
• Back to the FOR statement. The following functions compute the same result from a

vector passed as an argument.

• What do they compute?

function s = name_1 (V)
% ...

s = 0;
for v = V

s = s + v;
end

end

function s = name_2 (V)
% ...

s = 0;
for i = 1:length(V)

s = s + V(i);
end

end

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

22

Iterative Execution - FOR
• he previous functions use variable s as an accumulator. At each iteration the

accumulator is updated to take into account the elements of the vector already
considered.

• The update of the accumulator variable can be viewed in “debugging” mode, i.e. its
update instruction does not end in “;”

function s = name_1 (V)
% ...

s = 0
for v = V

s = s + v
end

end

>> Z =[2 6 1 7]
Z = 2 6 1 7

>> x = name_1(Z)
s = 0
s = 2 % 0 + 2
s = 8 % 2 + 6
s = 9 % 8 + 1
s = 17 % 9 + 7
x = 17

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

23

Iterative Execution - FOR
• The following example uses the same technique, but includes an if statement inside

the for, so that only some elements produce changes to the accumulator variable.

• What does it compute?

• Note that this technique can be used

• with any operation that is commutative and associative, as is the case of
operations sum, product, max and min; and

• The accumulator is initialized with the neutral element of the operation (0 for
sum, 1 for product, -Inf for max and +Inf for min)

function s = name_3 (V)
% ...

s = -Inf;
for v = V

if v > s
s = v;

end
end

end

function s = name_4 (V)
% ...

s = -Inf;
for i = 1:length(V)

s = max(V(i),s);
end

end

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

24

Iterative Execution - FOR
• Again the behaviour of these functions can be “debugged”.

function s = name_3 (V)
% ...

s = -Inf;
for v = V

if v > s
s = v;

end
end

end

function s = name_4 (V)
% ...

s = -Inf;
for i = 1:length(V)

s = max(V(i),s);
end

end

>> Z =[2 6 1 7]
Z = 2 6 1 7

>> x = name_3(Z)
s = -Inf
s = 2
s = 6
s = 7
x = 7

>> Z =[2 6 1 7]
Z = 2 6 1 7

>> x = name_4(Z)
s = -Inf
s = 2
s = 6
s = 6
s = 7
x = 7

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

25

Iterative Execution - FOR
• The following example uses the same technique, but includes an if statement inside

the for, so that only some elements produce changes to the accumulator variable.

• What do they compute?

function s = name_5 (V)
% ...

s = +Inf;
for v = V

if v < s
s = v;

end
end

end

function s = name_6 (V)
% ...

s = +Inf;
for i = 1:length(V)

if V(i) < s
s = V(i);

end
end

end

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

26

Nested FORs
• When dealing with matrices it is usual to adopt two iterative variables to represent the

indices of the rows and columns of the matrix.

• This is illustrated in the following example, taking a matrix as an argument.

• What does it compute?

function s = name_7 (M)
% ...

s = 0;
for i = 1:rows(M)

for j = 1:columns(M)
s = s + M(i,j);

end
end

end

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

27

Nested FORs
• Again the behaviour of this function may be debugged:

function s = name_7 (M)
% ...

s = 0;
for i = 1:rows(M)

for j = 1:columns(M)
s = s + M(i,j)

end
end

end

>> A =[2 6 3; 1 0 8]
A = 2 6 3

1 0 8
>> x = name_7(Z)
s = 0
s = 2 % + M(1,1)
s = 8 % + M(1,2)
s = 11 % + M(1,3)
x = 12 % + M(2,1)
x = 12 % + M(2,2)
x = 20 % + M(2,3)
s = 20

28 September 2018 2: Functions; IF and FOR instructions in MatLab
Pedro Barahona

28

Nested FORs
• Actually the same result could be obtained by summing the elements of the matrix by

columns:

function s = name_7 (M)
% ...

s = 0;
for j = 1:columns(M)

for i = 1:rows (M)
s = s + M(i,j)

end
end

end

>> A =[2 6 3; 1 0 8]
A = 2 6 3

1 0 8
>> x = name_7(Z)
s = 0
s = 2 % + M(1,1)
s = 3 % + M(2,1)
s = 9 % + M(1,2)
x = 9 % + M(2,2)
x = 12 % + M(1,3)
x = 20 % + M(2,3)
s = 20

