
Search in Vectors; Sorting

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semestre 2018/2019

2 November 2018

Search
• A key goal in informatics is to find the information that is needed. And to do so, one

needs some type of search.

• In this lecture we will focus on finding information in a (numerical) vector. Most of
the techniques discussed may later be adapted to other data structures.

• In a vector V, of length n, there are two types of searches that are basic:

• Given an index i, find the value v = V(i);

• Given a value v, find the index i such that v = V(i), if any;

• Of course, in a vector these two types of search have completely different
complexity properties.

• In the first case, all that is needed is to guarantee that index i is valid, i.e. i ≤ n.

• In a vector this requires a single access to the vector.

• In the second case, the different values of the vector must be considered.

• In the worst case, all n values must be considered, requiring n accesses.

6: Search in Vectors; Sorting 2

2 November 2018

Sequential Search
• A general procedure to search for a value in a vector, sequentially, checks the

values one by one.

• If it finds the value it returns the value of the index where x occurs.
• Otherwise it stops after checking the last element of V.

• This sequential search can be specified by the following MATLAB code

6: Search in Vectors; Sorting 3

function p = find(x, V);
% returns the index p of vector V where x is to
% be found; if V does not contain x, then the
% function returns p = 0

p = 0; % value not found yet
n = length(V)
for i = 1:n

if V(i) == x
p = i;
return;

end
end

end

2 November 2018

Sequential Search
• The same procedure can be implemented without interrupting the loop, replacing

the FOR loop by a WHILE loop, and maintaining a Boolean variable to indicate
whether the element was already found.

6: Search in Vectors; Sorting 4

function p = find(x, V);
% returns the index p of vector V where x is to
% be found; if V does not contain x, then the
% function returns p = 0

p = 0; % value not found yet
found = false;
i = 1;
while i <= n && !found

if V(i) == x
p = i;
found = true;

else
i = i + 1;

end
end

end

2 November 2018

Search
• In general, the algorithms are classified according to their complexity on the size n

of the input data.

• We say that an algorithm has worst case time complexity of O(f(n)) if the number
of basic operations it requires is asymptotically⎡ bound by f(n), i.e.

where k is some constant.

• Hence, the above algorithms for searching an element in a vector of size n have
linear complexity, i.e. complexity

O(n)

6: Search in Vectors; Sorting 5

lim%→'
((*)
* = -

2 November 2018

Search
• Given the speed of current processors, in many cases, it is acceptable to pay this

cost, i.e. to spend at most n accesses to find an element.

• But if one is interested in doing several searches in a very large vector, it is
convenient to adopt a better policy.

• However, a better policy is only possible if the information is adequately
maintained (stored) so as to ease the searching task.

• In the case of a vector, searching is much easier if the vector is sorted:

• Even if the search is sequential, as before, there is now the possibility to give
up the search earlier, if one “passes” the value of interest;

• In average, this reduces the number of accesses to n/2.

• A better search policy may be quite effective

• In fact, a divide and conquer policy may bound the number of accesses to
log(n).

6: Search in Vectors; Sorting 6

2 November 2018

Improved Sequential Search
• If the vector S is sorted, than the search for a value x can be interrupted before the

end of the vector. Assuming S is sorted in increasing order, the previous algorithm
(with the FOR loop) can be adapted to

• Although the number of accesses is decreased in average to n/2 the complexity of
the algorithm is still O(n).

6: Search in Vectors; Sorting 7

function p = find(x, S);
% returns the index p of a vector S, sorted in
% increasing order, where x is to be found;
% if S does not contain x, it returns p = 0

p = 0; % value not found yet
n = length(V)
for i = 1:n

if V(i) == x % x found in position p
p = i; return;

elseif S(i) > x % x is not in S
return % with p = 0

end
end

end

2 November 2018

Bipartite Search
• However, we may still improve this complexity when the vector S is sorted.

• To do so, we will define a function, that searches an element in the vector between
indices lo and up, where 1 ≤ lo ≤ up ≤ n.

• The algorithm to implement the search can be informally defined as follows

• Look at the index m, in the middle of the range of interest, i.e. m = (lo+up)/2

• If S(m) = x, the element was found, so return position m

• If S(m) > x, x must be searched before the mid point, i.e. in range lo..m-1

• If S(m) < x, x must be searched after the mid point, i.e. in range m+1..up

• Eventually, the range is null (i.e. the lower bound is larger than the upper
bound, in which case the element is not present in the vector, and the
procedure returns 0.

6: Search in Vectors; Sorting 8

2 November 2018

Bipartite Search
• The above algorithm is easily implemented with a recursive function.

• Note that the test for the termination of recursion (lo <= up) is done before the
recursive calls.

6: Search in Vectors; Sorting 9

function p = find_between(x, S, lo, up);
% returns the index p of a vector S, sorted in
% increasing order, if x is to be found between
% indices lo and up. Otherwise, it returns p = 0

p = 0;
if lo <= up

m = round((lo+up))/2;
if S(m) == x

p = m; return;
elseif x < S(m)

p = find_between(x,S,lo, m-1)
else

p = find_between(x,S,m+1, up)
end

end
end

2 November 2018

Bipartite Search
• The above function can be used directly or, if one wants to maintain the interface

with a find/2 function, this function may be rewritten as

• In any case, we should analyse the complexity of the algorithms implemented in
function find_between/4, and this is done next.

6: Search in Vectors; Sorting 10

function p = find(x, V);
% returns the index p of a sorted vector S where x
% is to be found; if V does not contain x, then the
% function returns p = 0

n = length(V);
p = find_between(x, S, 1, n);

end

2 November 2018

Bipartite Search

• To analyse the complexity of this binary search, made to a vector S of size n, we

note the size of the ranges for consecutive calls.

• In particular, we note that in each call, the size of the range is reduced to half, as

we check the element in the middle of the input range. Hence

• Call 1 is made to a range of size n 1 à n
• Call 2 is made to a range of size n/2 2 à n/2
• Call 3 is made to a range of size n/4 3 à n/22

• …

• In the limit, i.e. the element has not been found, the kth call is made to a vector of

size 1, i.e.

• Call k is made to a range of size n/2k-1 k à n/2k-1 = 1

• Hence we have

k-1 = log2(n)

and hence the algorithm has a logarithmic complexity, i.e. its complexity is

O(log(n))

6: Search in Vectors; Sorting 11

2 November 2018

Bipartite Search
• In this analysis we do not take into account the rounding that is used to obtain

integer indices, but for large values of n this does not make much of a difference.

• Moreover the base of the logarithm that is chosen is not a big issue, since the ratio
between logarithms of different bases is a constant. In particular,

log2(n) = ln(n) / ln(2)

• What is significant is the decrease in complexity of the algorithms for searching,
namely for very large vectors, as shown in the next table

6: Search in Vectors; Sorting 12

n log10(n) log2(n) ln(n)
10 1.000 3.322 2.303
100 2.000 6.644 4.605
1	000 3.000 9.966 6.908
10	000 4.000 13.288 9.210
100000 5.000 16.610 11.513
1	000	000 6.000 19.932 13.816
10	000	000 7.000 23.253 16.118
100	000	000 8.000 26.575 18.421
1	000	000	000 9.000 29.897 20.723
10	000	000	000 10.000 33.219 23.026

2 November 2018

Sorting
• Of course, sorting a vector takes time! If the number of required searches is small,

it might not pay off to spend a lot of time in the sorting, to save a small time in the

search. But for large values of n, the speed up in the search can be very large.

• For n = 1010, the size of the population of a middle sized country as Portugal,
rather than 5*109 accesses we only need about log2(1010) ≈ 23 accesses, a speed

up of about 200 000 in each search!

• If each access takes 1 msec, than a bipartite search is done in 23 msec, whereas

sequential search would require 5*109 msec, i.e. 5000 sec, which is more than 1

hour!!!

• Of course, the data structure must be sorted, and this takes time, but often it can

be done at idle times (i.e. at night) so that the accesses can be done very
efficiently during normal office hours (i.e. daytime).

6: Search in Vectors; Sorting 13

2 November 2018

Vector Sort
• Sorting is possibly one of the most used and studied operations in Information

Systems. Given its relevance, a number of algorithms have been proposed for
sorting, and in particular for sorting vectors. Among them we can list:
• Insert Sort
• Bubble sort
• Merge Sort
• Quick Sort
• Bucket Sort
• Heap Sort

• We will next study some of them. The simplest ones have complexity O(n2),
whereas the best have complexity O(n�ln(n)). For small values of n both are
acceptable, but for larger ones, the best algorithms are needed.

• Note: A good animation of sorting algorithms is available in youtube at
https://www.youtube.com/watch?v=kPRA0W1kECg

6: Search in Vectors; Sorting 14

For n = 103 and 1 op = 1 ns, we have
• n2 ≈ 106 ns ≈ 1 msec
• n� ln(n) ≈ 7000 ns ≈ 7 µsec

For n = 1010 we have
• n2 ≈ 1020 ns ≈ 132 years
• n� ln(n) ≈ 2.3 � 1011 ns (4 min)

2 November 2018

Insert Sort
• Insert sort is an algorithm that progressively sorts the beginning of the vector.

• At each step, it assumes that a prefix of size k of the vector, i.e. the first k
elements of the vector, are already sorted.

• Then it proceeds by inserting the k+1th element in this prefix, to obtain a new prefix
of size k+1.

• This operation must thus be executed n-1 times

• Starting with a prefix of size 1 and inserting the 2nd element in it

• Continuing with a prefix of size 2 and inserting the 3rd element in it

• …

• Ending with a prefix of size n-1 and inserting the nth element in it.

• Of course, at the end of this process, the whole vector is sorted.

6: Search in Vectors; Sorting 15

2 November 2018

Insert Sort
• Insert sort can be illustrated with a simple example

• Insert the 2nd into the prefix of size 1

• Insert the 3rd into the prefix of size 2

• Insert the 4th into the prefix of size 3

• Insert the 5th into the prefix of size 4

6: Search in Vectors; Sorting 16

2 November 2018

Insert Sort
• The iterative version of the algorithm can be specified following the previous

explanation.

• The algorithm initialises the sorted vector to be equal to the original vector.

• Then it executes a FOR loop, to insert the kth element into the prefix of size k-1.

• starting with k = 2; and

• ending with k = n-1, the size of the vector

6: Search in Vectors; Sorting 17

function S = insert_sort_ite(V)
S = V;
n = length(V);
for k = 2:n

... % insert kth element in prefix of size k-1
end;

end;

2 November 2018

Insert Sort
• The loop block inserts x, the kth element of S, into the prefix of size k-1, by

• Finding p, the position where x should be inserted

• Pushing forward the elements of the vector from index p to index k-1

• Care must be taken not to write over the existing elements the pushing
should be done from k-1 to k, then from k-2 to k-2, …, until p to p+1;

• Of course, if p = k (i.e. the element remains in the same position) no
pushing is done.

6: Search in Vectors; Sorting 18

for k = 2:n
x = S(k);
... % p is the position to insert x;
for j = k-1:-1:p

S(j+1) = S(j); % push elements forward
end;
S(p) = x;

end

2 November 2018

Insert Sort
• The position p where to insert x is found by sweeping the vector starting from

position 1, until the position is found.

• The position p to insert x = S(k) is thus either

• The first position p (<k) where S(p) > x; or

• position k, when all elements in positions 1..k-1 are less than x

• In this last case, element S(k) = x remains in the same position k

6: Search in Vectors; Sorting 19

i = 0;
found = false;
while !found

i = i + 1;
if i = k || S(i) > x

p = i;
found = true;

end
end

2 November 2018

Insert Sort - Complexity
• The complexity of Insert Sort can be assessed, looking at the structure of the

algorithm.

• There are n-1 loops, where in each loop, the element in the kth position (2 ≤ k ≤ n),
with value x, is inserted in a prefix of size k-1.

• In the worst case (when the prefix) is already sorted, this requires k-1
comparisons.

• Summing for all the loop instances, the worst-case number of comparisons is

(2-1) + (3-1) + (4-1) + … + (n-1) = 1 + 2 +... + n-1 = (1+n-1) (n-1) / 2 ≈ n2/2

• In the worst case, there is one insertion in each of n-1 loop instances.

• Hence in the worst case, the algorithm requires n2/2 comparisons and n-1
insertions.

• Assuming these operations take roughly the same time, the time complexity of
insert sort is thus

O(n2).

6: Search in Vectors; Sorting 20

2 November 2018

Insert Sort – Recursive version
• A recursive version of the algorithm is possibly more understandable, as shown

below
• If the vector has zero or one element, it is already sorted;
• Otherwise

• sort the first n-1 elements to obtain a sorted prefix of n-1 elements, and
• insert the last element in the sorted prefix

• Note: The time complexity of the recursive version is the same, but it requires
several function calls, and auxiliary vectors, which makes execution slower.

6: Search in Vectors; Sorting 21

function S = insert_sort_rec(V)
% S is the sorted version of vector V

n = length(V);
if n <= 1

S = V;
else

P = insert_sort_rec(V(1:n-1));
S = insert_one(V(n), P);

end;
end;

2 November 2018

Insert Sort – Recursive version
• Inserting x in a sorted vector V can also be defined recursively

• If the element is less than the least element of the vector insert it at the head
• Otherwise,

• Keep the first element of the vector, V(1); and
• Insert x in the rest of vector V; and
• Append the resulting vector to V(1)

6: Search in Vectors; Sorting 22

function S = insert_one(x,V)
% insert x in the right position of sorted vector V

n = length(V);
if n = 0

S = [x]
else

if x < V(1) % x is less than the least of V
S = [x, V]

else
U = insert_one(x,V(2:n))
S = [V(1), U]

end;
end;

end;

2 November 2018

Bubble Sort
• Bubble sort is a very simple and popular algorithm for sorting that is based on a

simple idea: if neighbouring elements of the vector (a bubble) are in the wrong
order they should be swapped.

• Of course this swap operation has to be repeated several times.

• Sweeping the vector with a bubble from start to end, it is easy to see that in
the end, the largest element of the vector is in the last position.

• Sweeping it again, the 2nd largest element is in the 2nd last position.

• Sweeping n times all elements of the vector are in their right order.

• In fact:

• Only n-1 sweeps are needed: if all but the smallest element are sorted in the
last positions, the smallest element is correctly placed in the first position;

• Since the largest elements of the vector are being placed in their right order,
i.e. in the end of the vector, the successive sweeps may be executed in
successively smaller prefixes of the vector.

6: Search in Vectors; Sorting 23

2 November 2018

Bubble Sort
• Bubble sort can be illustrated with the same simple example

• 1st sweep, placing the largest element

• 2nd sweep, placing the 2nd largest element

• 3rd sweep, placing the 3rd largest element

• 4th sweep, placing the 4th largest element

• A 5th sweep is not needed

6: Search in Vectors; Sorting 24

2 November 2018

Bubble Sort
• The iterative version of the algorithm can be specified following the previous

explanation.

• The algorithm performs n-1 sweeps of the bubble, each sweep ending in
successively smaller positions of the bubble, starting n position n and ending in
position 2.

6: Search in Vectors; Sorting 25

function S = bubble_sort(V)
% S is the sorted version of V

S = V;
n = length(V);
for k = n:-1:2

... % sweeps a bubble from positions 1 to k

... % where k decreases from n down to 2
end;

end;

2 November 2018

Bubble Sort
• In each sweep, the bubble progressively advances, its first element starting in

position 1 and ending in position k-1.

• In each position of the bubble, its elements are compared and if needed they are
swapped.

6: Search in Vectors; Sorting 26

function S = bubble_sort (V)
...

% sweeping the vector with a bubble
for k = n:-1:2

for i = 1:k-1 % advances the bubble from 1:2 to k-1:k
if S(i) > S(i+1)

x = S(i); % swap the bubble
S(i) = S(i+1); % swap the bubble
S(i+1) = x; % swap the bubble

end;
end;

end
end;

2 November 2018

Bubble Sort - Complexity
• The complexity of Bubble Sort can be easily assessed, looking at the structure of

the algorithm with 2 nested loops.

• The body of the inner loop, regarding the advance of the bubble in each sweep, is

executed a variable number of times: n-1 in the 1st sweep, n-2 in the 2nd sweep,

…, and 1 in the n-1th sweep with a total of

(n-1) + (n-2) + … + 1 = n-1 * (1+ n-1) (n-1) /2 ≈ n2/2 sweeps

• Hence the time complexity of bubble sort is O(n2).

6: Search in Vectors; Sorting 27

...
for k = n:-1:2

for i = 1:k-1
if S(i) > S(i+1)

...
end;

end;
end
...

