
Discrete Stochastic Simulation

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semestre 2018/2019

16 November 2018

Random Processes
• Many “systems” do not have an analytical model from which we may study their

behaviour over time, as well as making decisions about their design. Nevertheless,
for many such systems, their behaviour may be analysed by simulation.

• An important source of uncertainty is the occurrence of non-deterministic events,
affecting such behaviour, but for which there is no exact information about them.

• In this case, studying these systems requires the consideration of stochastic
processes, i.e. phenomena that evolve over time or space taking into account a
sequence of events. The timing of these events can be approximated given the
incomplete information that may be known, such as the patterns observed in the
past of their occurrence.

• These patterns are typically modelled by probability distributions that fit the
observations, as studied in Statistics.

• Here we will thus consider nondeterministic processes where events follow some
probability distribution, discrete or continuous, and study how to model systems
subject to this type of events.

Random Variables; (Monte Carlo) Simulation 2

16 November 2018

(Pseudo-) Random Numbers
• As will be seen briefly, any nondeterministic process that follows a known

probability distribution may be simulated by means of a random generator
function, that generates numbers in the interval 0..1 with a uniform distribution.

• In most computer languages and tools (as in MATLAB) this random generator is
available through a system defined function rand().

• Based on this function any nondeterministic process, defined by a known
probability density function (PDF), p, can be simulated.

• Informally, this function is defined over a domain, discrete or continuous, of the
values that a probabilistic variable can take. We will assume here a numerical
domain ranging in the interval a..b.

• Remind that the cumulative distribution function (CDF), P, can be defined as

Random Variables; (Monte Carlo) Simulation 3

P(x) = p(v)
v=a

v=x

∑

Discrete Domain

P(x) = p(v)dv
v=a

v=b

∫

Continuous Domains

16 November 2018

Inverse Method
• The inverse method takes into account that, for a random variable taking values in

the domain a .. b, it is
P(a) = 0 and P(b) = 1

• Then, the random variable may be implemented by the inverse method in the two
following steps:

1. Generate a random number r, with uniform distribution in the interval 0 .. 1;

2. Return x = F-1(r)
• In fact the probability pi of generating a number in interval xi .. xi+dx, i.e. the

probability that the variable takes an approximate value xi is, dx. Since,

Random Variables; (Monte Carlo) Simulation 4

• p1 = dr1 = dP(x1)/dx • dx = p(x1) dx;

• p2 = dr2 = dP(x2)/dx • dx = p(x2) dx;

• Hence the probabilities of two values in the
domain being generated is proportional to
the value of their probability density function. 0

0.25

0.5

0.75

1

0 1 2 3 4

P(x)

dxdx

x1 x2

dr1

dr2

16 November 2018

Inverse Method
Example: Simulate the throwing of a dice

• In this discrete distribution, each of the values 1 to 6 occurs with probability 1/6.

• The probability distribution P(x), is the step function shown in the figure;

• The inverse function, P-1(x), can be computed by finding the step (1..6) of the
probability function that corresponds to the random number r, generated by function
rand(), as implemented in function dice().

Random Variables; (Monte Carlo) Simulation 5

function v = dice();
r = rand();
if r <= 1/6 v = 1;
elseif r <= 2/6 v = 2;
elseif r <= 3/6 v = 3;
elseif r <= 4/6 v = 4;
elseif r <= 5/6 v = 5;
else v = 6;
end

end

16 November 2018

Inverse Method
Example: Simulate the next arrival of a stochastic process following an exponential
distribution, with mean time m = 1/l

• This is a continuous distribution where p(x) = l e-lx, ranging from 0 to ∞.

• The probability function r = F(x) = (1- e-lx) (shown for l = 1)

• The inverse function is then x = F-1(r) = - ln(1-r) / l

• Hence, these arrivals can be modelled by a variable obtained through function
exp_inv(lambda), shown below parameterised by the value of l.

Random Variables; (Monte Carlo) Simulation 6

function x = exp_inv(lambda);
r = rand();
x = -log(1-r)/lambda;

end

0

0.25

0.5

0.75

1

0 1 2 3 4 5

1-exp(-x)

16 November 2018

Accept/Reject Method
• Of course, the inverse method assumes that it is possible to obtain a F-1, the

inverse of the cumulative distribution function F.

• When a closed form of F-1 is not available, the random variable may be
implemented by the accept/reject method. Assuming

• The domain of the variable is a .. b, and

• The probability density function in the domain is always less or equal to m

then the random variable may be implemented in the following steps:
1. Generate a random number x, with uniform distribution in the interval a .. b;
2. Generate a random number r, with uniform distribution in the interval 0 .. m;
3. Accept x, if r ≤ p(x), reject it otherwise

• In some cases, the domain of a continuous random variable is infinite. In this case,
one may truncate the domain so that the values truncated have a “very low
probability”

Random Variables; (Monte Carlo) Simulation 7

16 November 2018

Accept/Reject Method
• The probability that a value xi in the domain a..b is accepted is thus

• Probability that xi is generated, i.e. the value is between xi and xi +dx;
• Probability that the value is subsequently accepted, i.e. p(xi) ≤ r.

• Given two values x1 and x2, the first probability is the same for both (dx is the
same) .

• Since r is generated in the range 0..M, their acceptance probability is, respectively,
p(x1)/M and p(x2)/M.

• Hence the probability of generating two values x1 and x2 is proportional to the
value of their probability density function

Random Variables; (Monte Carlo) Simulation 8

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5

p(x) = 2 exp(-x)

M

x1 x2

16 November 2018

Accept/Reject Method
Example: Simulate the next arrival of a stochastic process following an exponential
distribution

• This is a continuous distribution where p(x) = l e-lx, ranging from 0 to ∞.

• The domain must then be truncated to some value T (T=5 in the figure).

• The function is always less or equal to l (so we can use M = l) .

• Hence, these arrivals can be modelled by a variable obtained through function
exp_ar(lb,t), shown below parameterised by the values of l and k.

Random Variables; (Monte Carlo) Simulation 9

function x = exp_ar(M,T);
accept = false;
while ! accept

x = T * rand();
r = M * rand();
accept = (r <= M*exp(-M*x))

end
end0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

p(x) = 2 exp(-2x)

16 November 2018

Simulation of Stochastic Systems
• A stochastic system has a behaviour that depends on a stochastic process, i.e. a

sequence of non-deterministic events that evolve over time or space.

• Here we assume that the nondeterministic events may be modelled by random
variables specified by some probability distribution.

• At any time, the system is characterised by its state, i.e. the value of the set of
state variables that completely specifies it.

• Whenever an event occurs, it causes some (possibly empty) change of the system
to a new state, possibly yielding some output.

• Such a system can thus be modelled by an automaton, defined informally as
• A set of states, some of which might be the initial states
• A set of transitions, between two states, caused by some event, and possibly

yielding some output.
• Monitoring data, that gathers extra information during the simulation useful to

analyse the behaviour of the system.

• The behaviour of the system is modelled by simulating the state transitions of the
automaton given a set of events, until a stop condition holds.

Random Variables; (Monte Carlo) Simulation 10

16 November 2018

Example: Random Walk
• Once defined the state variables and the events that may cause state transitions,

an automaton may thus be specified by a table that enumerates all possible state
transitions.

• In addition the initial state must be specified, as well as the terminating conditions.

• One such automaton may be considered to simulate a random walk, i.e. the
movement of an object composed of a sequence of random steps (this is a very
simplified model of the Brownian Motion problem arising in physics - cf.
https://en.wikipedia.org/wiki/Brownian_motion)

• In particular we will consider the steps to be either forward or backwards, occurring
with equal probability, and causing the position of the object to increase or
decrease, respectively, its current position.

• The automaton for the Random Walk process may thus be specified in the
following slide.

Random Variables; (Monte Carlo) Simulation 11

16 November 2018

Example: Random Walk
State Variables:
• A state st consists of two fields, pos, stating the position of the object, and stp,

the number of steps already done

Events
• An event is either a move forward or backwards, and is represented by a variable,

dir, with randomly generated values values 1 or -1.

Initial State
• We may assume that the object starts in pos = 0 at stp = 0.

Termination Condition
• We may want to know whether the object reaches a certain distance d fom the

initial position and thus set the termination condition to be pos >= d (or better, if we
consider both directions, abs(pos) >= d.

Monitoring Data
• In this case, we do not need extra information. All useful information is required is

modelled in the state variables.

Random Variables; (Monte Carlo) Simulation 12

16 November 2018

Example: Random Walk
• The state transition table of this automaton can thus be specified as follows:

• Notice that, somewhat artificially we consider as output the generation of the next
event. This is done so that it allows the specification of a generic algorithm to
specify these automata, where some side information may be considered in
general.

• We will also consider as output the update of some monitoring information that is
needed in more complex automata and simulations.

Random Variables; (Monte Carlo) Simulation 13

event output
dir stp pos stp pos next event
1 s p s+1 p+1 random dir
-1 s p s+1 p-1 random dir

current state next state

16 November 2018

Simulation of Stochastic Systems
• The simulation of a system, i.e. the behaviour of the corresponding automaton,

may be specified through the following generic function

• The function returns the information gathered during the simulation for monitoring
the behaviour of the system.

• To make it generic, all the information gathered in the states, events and
monitoring, should be modelled in appropriate structures, s, e and m, respectively.

• The function requires the specification of 5 auxiliary functions:

Random Variables; (Monte Carlo) Simulation 14

function m = simulate (...)
s = initial_state(...);
e = initial_event(...);
m = initial_monitor(...);
while !stop(...)

[s, e, m] = transition(s, e, m);
end

end

16 November 2018

Simulation of Stochastic Systems

• initial_state(…): sets the state variables in the initial state.

• initial_state(…): sets the event variables applicable to the initial state.

• initial_state(…): sets the monitoring variables prior to the initial state.

• stop(…): checks the stopping condition for the simulation.

• transition(s,e,m): given the state s, and an event obtained from e, determines
the next state, and updates the monitoring data, m, as well as the event data
from where the next event can be obtained.

Random Variables; (Monte Carlo) Simulation 15

function m = simulate (...)
s = initial_state(...);
e = initial_event(...);
m = initial_monitor(...);
while !stop(...)

[s, e, m] = transition(s, e, m);
end

end

16 November 2018

Example: Random Walk

• We may now instantiate the generic functions identified before.

• The initial state has both steps and position set at zero

• The initial event is simply either -1 or +1 randomly generated (with equal

probability).

• In this case, we will not consider extra monitoring information. All the useful

information lies in the state variables

Random Variables; (Monte Carlo) Simulation 16

function s = initial_walk_state()
s.pos = 0;
s.stp = 0;

end

function e = initial_walk_event()
e.dir = -1 + (random()< 0.5) * 2;

end

function m = initial_walk_monitor(s)
m = s;

end

16 November 2018

Example: Random Walk
• The stopping condition just checks if distance k was reached, within k steps

• We may now specify the transition function, given the previously discussed
transition.

Random Variables; (Monte Carlo) Simulation 17

event output
dir stp pos stp pos next event
1 s p s+1 p+1 random dir
-1 s p s+1 p-1 random dir

current state next state

function [s, e, m] = transition_walk(s, e, m);
s.stp = s.stp + 0;
s.pos = st.pos + e.dir;
e.dir = -1 + (random()< 0.5) * 2;
m = s;

end

function b = stop_walk (s, d, k);
b = (abs(s.pos) >= d || s.stp > k);

end

16 November 2018

Example: Random Walk
• To sum up, the simulation function is instantiated for the case of a random walk

system, i.e. the behaviour of the corresponding automaton, may be specified
through the following generic function

Random Variables; (Monte Carlo) Simulation 18

function m = simulate_walk (d, k)
s = initial_walk_state();
e = initial_walk_event();
m = initial_walk_monitor(s);
while ! stop_walk (s, d, k);

[s, e, m] = transition_walk(s, e, m);
end

end

16 November 2018

Example: Queueing Systems
• Queuing systems are systems relying on the occurrence of requests that are to be

serviced, if possible, by a number of existing resources.

• Examples of these systems are everywhere, ranging from traditional supermarket
tills or petrol stations, to more “present day” call centres or computers servers.

• Broadly, these systems are characterised by a number of parameters, namely:

• the number of servers that are available (in parallel);

• the timing of the request arrivals
• typically following some probability distribution

• the queuing discipline used
• a simple queue or different queues

• the maximum size of a queue
• if full, a new arriving request is rejected

• the service time for each request
• typically following some probability distribution

Random Variables; (Monte Carlo) Simulation 19

16 November 2018

Example: Queueing Systems
• These systems are now illustrated with a very simple system with the following

characteristics:
• One single server
• Service time following a uniform distribution between 2 and 8 secs;
• No queue buffer: if a request arrives when the server is busy, it is rejected.
• Requests arrive with an exponential distribution with mean time of 5 seconds.

• Note that although the mean time between arrivals and the mean time of service is
the same (5 secs) a number of features are not be easily computed analytically.

• In particular, simulation (for a sufficient large time) may be used to estimate the
value of a number of features of this system, namely
• What is the percentage of time the server is busy
• What is the percentage of requests that are rejected

Random Variables; (Monte Carlo) Simulation 20

16 November 2018

Example: Queueing Systems
• The simulation of these systems can use the previous scheme, taking into account

the characteristics of the specific queuing system.

• In particular, the state, s, of a system should indicate whether a request is being
served, and at what time it arrived. Moreover it should encode the simulation time.
Hence, s may be encoded as a structure with two fields:
• s.time (time): the time elapsed since the beginning of the simulation;
• s.entry_server_time (est): a number specifying whether the server is busy. If

the server is busy it should represent the time the request has been accepted.
Otherwise, the value is encoded as +inf.

• The event, s, should indicate the timing of the next arrival of a request, as well as
the timing of the next completion of a served request. :
• e.next_arrival_time (nat): the timing of the next arrival of a request;
• e.next_exit_time (net): the timing of the next exit from the server.
• If the servers are empty the next_exit_time should be encoded as +inf.

Random Variables; (Monte Carlo) Simulation 21

16 November 2018

Example: Queueing Systems
• The system should be monitored so as to maintain at any time the number of

requests so far (total, accepted and rejected). Hence, m may be encoded as a
structure with 3 fields:
• m.server_busy_time (sbt): the time the server has been busy so far;
• m.number_accepted_requests (nar): Number of requests accepted so far;
• m.number_rejected_requests (nrr): Number of requests rejected so far;

• Given these assumptions the initial state should be encoded as

• s.time = 0; s.net = inf.

• The initial events should be

• e.nat = x; s.net = inf. where x is obtained from the exponential distribution

• The initial monitoring data should be

• m.nar = 0; m.nrr = 0; m.sbt = 0

Random Variables; (Monte Carlo) Simulation 22

16 November 2018

Example: Queueing Systems
• The stopping condition could be specified in a number of ways. One possibility is to

simulate the queueing system until some final time, i.e. until

• s.time > final_time

• Finally, the state transitions can be caused by the arrival of requests or exit from
servers, and can be described in the following transition table

where next a and next b are random times generated, respectively, according to the
exponential distribution of mean time m, and a uniform distribution between lo and
up.

Random Variables; (Monte Carlo) Simulation 23

nat net lts est lts est nat net nar nrr sbt
arrival while empty a inf t inf a a exp a uni a +1 = =

arrival before exit a b (> a) t c a c exp a b = +1 =
exit before arrival a b (< a) t c b inf a inf = = +(b-c)

current state next stateevent next event monitor

16 November 2018

Example: Queueing Systems
• Given the above specifications we can implement the queueing system, with 1

server and max queue of 0 as follows:

Random Variables; (Monte Carlo) Simulation 24

function s = initial_s1q0_state()
s.latest_system_time = 0;
s.entry_time_in_server = inf;

end

function e = initial_s1q0_event(mean)
e.next_arrival_time = expo_distr (mean);
e.next_exit_time = inf;

end

function e = initial_s1q0_monitor()
m.number_rejected_services = 0;
m.number_accepted_services = 0;
m.server_busy_time = 0;

end

function e = stop_s1q0(s,max_t)
s.latest_system_time =< max_t;

end

• Finally, the state transitions can be implemented taking into account the previous
transition table

nat net lts est lts est nat net nar nrr sbt
arrival while empty a inf t inf a a exp a uni a +1 = =

arrival before exit a b (> a) t c a c exp a b = +1 =
exit before arrival a b (< a) t c b inf a inf = = +(b-c)

current state next stateevent next event monitor

16 November 2018

Example: Queueing Systems

Random Variables; (Monte Carlo) Simulation 25

function [s,e,m] = transition_s1q0(s,e,m,lo,up,mean);

% arrival while empty
if e.next_exit_time == inf

s.latest_system_time = e.next_arrival_time;
s.entry_time_in_server = e.next_arrival_time;
e.next_arrival_time = s.latest_system_time + expo_distr(mean);
e.next_exit_time = s.latest_system_time + unif_distr(lo,up);
m.number_accepted_services = m.number_accepted_services + 1;

....

end

16 November 2018

Example: Queueing Systems

Random Variables; (Monte Carlo) Simulation 26

function [s,e,m] = transition_s1q0(s,e,m,lo,up,mean);

....
% arrival before exit

elseif e.next_arrival_time <= e.next_exit_time
s.latest_system_time = e.next_arrival_time ;
e.next_arrival_time = s.latest_system_time + expo_distr(mean);
m.number_rejected_services = m.number_rejected_services + 1;

....

end

nat net lts est lts est nat net nar nrr sbt
arrival while empty a inf t inf a a exp a uni a +1 = =

arrival before exit a b (> a) t c a c exp a b = +1 =
exit before arrival a b (< a) t c b inf a inf = = +(b-c)

current state next stateevent next event monitor

16 November 2018

Example: Queueing Systems

Random Variables; (Monte Carlo) Simulation 27

function [s,e,m] = transition_s1q0(s,e,m,lo,up,mean);
...
%exit before arrival

elseif e.next_exit_time < e.next_arrival_time
s.latest_system_time = e.next_exit_time;
aux = e.next_exit_time - s.entry_time_in_server;
m.server_busy_time = m.server_busy_time + aux;
e.next_exit_time = inf;
s.entry_time_in_server = inf;

else
printf("unforeseen situation!!!");

end

nat net lts est lts est nat net nar nrr sbt
arrival while empty a inf t inf a a exp a uni a +1 = =

arrival before exit a b (> a) t c a c exp a b = +1 =
exit before arrival a b (< a) t c b inf a inf = = +(b-c)

current state next stateevent next event monitor

