
Discrete Stochastic Simulation

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semestre 2018/2019

16 November 2018

Example: Queueing Systems
• We may now address a slightly more complicated queueing system where in

addition to one server, there is a buffer of size 1 where requests can be maintained
while the server is busy. We keep the same arrival distributions but adopt a
different serving time, as follows:
• One single server
• Service time following an Erlang distribution (2, 1.5);
• One buffer:

– if a request arrives when both the server and the buffer are empty, the
request enters the server.

– if a request arrives when the server is full but the buffer is empty, the
request stays in the buffer, until the server is free.

– if a request arrives when the buffer is full the request is rejected.
• Requests arrive with an exponential distribution with mean time of 3 minutes.

• Again, simulation (for a sufficient large time) may be used to estimate the
behaviour of this system.

Random Variables; (Monte Carlo) Simulation 2

16 November 2018

Example: Queueing Systems
• We will be interested in obtaining the likely behaviour of the system, namely

• What is the percentage of time the server is busy.

• What is the percentage of requests that are rejected;

• What is the average waiting time of a request in the queue.

• Now the state, s, of the system should indicate not only whether a request is being
served, and at what time it arrived, but also whether a request is in the queue, and
and at what time it arrived. Hence, s may be encoded as a structure with three
fields:

• s.latest_system_time (lst): the time elapsed since the beginning of the
simulation;

• s.entry_server_time (est): a number specifying whether the server is busy. If
the server is busy it should represent the time the request has been accepted.
Otherwise, the value is encoded as +inf.

• s.entry_buffer_time (ebt): a number specifying whether a request is in the
the queue, represent the time the request was been accepted (Otherwise , the
value is encoded as +inf).

Random Variables; (Monte Carlo) Simulation 3

16 November 2018

Example: Queueing Systems
• The event, e, should still indicate the timing of the next arrival of a request, as well

as the timing of the next completion of a served request:
• e.next_arrival_time (nat): the timing of the next arrival of a request;
• e.next_exit_time (net): the timing of the next exit from the server.
• If the server is empty, and the buffer is also empty, the next_exit_time should

be encoded as +inf.
• However, if the server becomes empty, but the buffer is not empty, the

request from the buffer is moved to the sderver a new next_exit_time should
be computed.

• To monitor the system a new variable should maintain the timing when the buffer
has been busy (to compute the mean waiting time), and m may be encoded as a
structure with 4 fields:
• m.server_busy_time (sbt): the time the server has been busy so far;
• m.buffer_wait_time (qwt): the time requests have been waiting in the queue;
• m.number_accepted_requests (nar): Number of requests accepted so far;
• m.number_rejected_requests (nrr): Number of requests rejected so far;

Random Variables; (Monte Carlo) Simulation 4

16 November 2018

Example: Queueing Systems
• Given the above assumptions the initial state should be encoded as

• s.latest_system_time = 0;
• s.entry_server_time: = inf.
• s.buffer_server_time: = inf.

• The initial events should be as before

• e.next_arrival_time = x;

• e.next_exit_time = inf;
where x is obtained from the exponential distribution

• The initial monitoring data should be

• m.server_busy_time = 0;

• m.buffer_busy_time = 0;

• m.number_accepted_requests = 0

• m.number_rejected_requests = 0.

Random Variables; (Monte Carlo) Simulation 5

16 November 2018

Example: Queueing Systems
• The stopping condition could be specified as before, namely by allowing the

simulation of the system to last until some final_time. i.e. until

• s.latest_system_time > final_time

• Finally, the state transitions can be caused by the arrival of requests or exit from
servers, and can be described in the following transition table

• But before encoding this example, let us analyse the serving times that follow an
Erlang(k,m) distribution (with k = 2, m = 1.5).

Random Variables; (Monte Carlo) Simulation 6

nat net lst est ebt lst est ebt nat net nar nrr sbt qwt
arrival (server empty, queue empty) a inf - inf inf a a inf exp a erl a +1 = = =

arrival (server busy, queue empty) a b (> a) - c inf a c a exp a b +1 = = a
arrival (server busy, queue busy) a b (> a) - c d a c d exp a b = +1 = =

departure (queue empty) a b (< a) - c inf b inf inf a inf = = +(b-c) =
departure (queue busy) a b (< a) - c d b b inf a erl b = = +(b-c) +(b-d)

event current state next state next event monitor

16 November 2018

Erlang distribution
• The Erlang distribution is the distribution of the sum of k independent and

identically distributed random variables, each having an exponential distribution
with mean m.

• Source: https://en.wikipedia.org/wiki/Erlang_distribution

Random Variables; (Monte Carlo) Simulation 7

16 November 2018

Erlang distribution
• The Erlang distribution is the distribution of the sum of k independent and

identically distributed random variables, each having an exponential distribution
with mean m.

• Its pdf (probability density function) is the following:

!(#; %,') = #%*+,*#/'
'% %.+ !

• Hence, a significant difference with respect to the uniform and exponential
distribution is that it cannot be generated by the inverse method (that requires
obtaining x as a function of f).

• Hence it can be obtained by the general accept-reject method, assuming that it is
truncated at some convenient x (for example, xmax = 10*k*m) and max value (it
depends on k and m, but for k > 1 and m > 0.2, fmax = 2 is a “safe” value).

• Of course, given the definition above it can be simulated as the sequence of k
exponential distributions, each with a mean m.

Random Variables; (Monte Carlo) Simulation 8

!(#; %,') = #%*+,*#/'
'% % − + !

• Adopting the accept-reject method the distribution can be obtained by adapting the
generic ar function (seen before) to the Erlang pdf, as follows

• In this case, we generate values of x, up to a maximum 10*k*m. In this range of
values for x, the values of the pdf are all below 2 (as discussed)

16 November 2018

Erlang distribution

Random Variables; (Monte Carlo) Simulation 9

function x = erlang_ar(k,m);
% generates events with an Erlang (k,m) distribution.
% it uses the generic accept-reject method

accept = false;
while ! accept

x = 10 * k * m * rand(); % x = 10*k*m
r = 2 * rand(); % fdp < 2
y = (x^(k-1)*exp(-x/m))/((m^k)*fact(k-1))
accept = (r <= y)

end
end

• Since the Erlang distribution corresponds to the the sum of k independent and
identically distributed random variables, each having an exponential distribution
with mean m/k, its generator can be also obtained alternatively as:

16 November 2018

Erlang distribution

Random Variables; (Monte Carlo) Simulation 10

function x = erlang_sp(k,m);
% generates events with an Erlang (k,m) distribution.
% it takes into account that this distribution
% corresponds to a sequence of k independent
% exponential distibutions with mean m.

x = 0;
for i = 1:k

x = x + expo_distr(m/k);
end

end

16 November 2018

Example: Queueing Systems
• Given the above specifications we can now implement the queueing system, with 1

server and one buffer as follows:

Random Variables; (Monte Carlo) Simulation 11

function s = initial_s1q1_state()
s.latest_system_time = 0;
s.entry_server_time = inf;
s.entry_buffer_time = inf; % new variable

end

function e = initial_s1q1_event(mean)
e.next_arrival_time = expo_distr (mean);
e.next_exit_time = inf;

end

function e = initial_s1q1_monitor()
m.number_rejected_services = 0;
m.number_accepted_services = 0;
m.server_busy_time = 0;
m.queue_wait_time = 0; % new variable

end

16 November 2018

Example: Queueing Systems
• The stopping condition emains the same (apart from the signature):

• Finally, transition function should now encode 5 different types of events as
described in the previous table

Random Variables; (Monte Carlo) Simulation 12

function e = stop_s1q1(s,max_t)
s.latest_system_time > max_t;

end

nat net lst est ebt lst est ebt nat net nar nrr sbt qwt
arrival (server empty, queue empty) a inf - inf inf a a inf exp a erl a +1 = = =

arrival (server busy, queue empty) a b (> a) - c inf a c a exp a b +1 = = a
arrival (server busy, queue busy) a b (> a) - c d a c d exp a b = +1 = =

departure (queue empty) a b (< a) - c inf b inf inf a inf = = +(b-c) =
departure (queue busy) a b (< a) - c d b b inf a erl b = = +(b-c) +(b-d)

event current state next state next event monitor

16 November 2018

Example: Queueing Systems

Random Variables; (Monte Carlo) Simulation 13

function [s,e,m] = transition_s1q1(s,e,m,mean,ke,me);

% arrival while server and buffer empty
if e.next_exit_time == inf && s.entry_buffer_time == inf

s.latest_system_time = e.next_arrival_time;
s.entry_buffer_time = e.next_arrival_time;
e.next_arrival_time = s.latest_system_time + expo_distr(mean);
e.next_exit_time = s.latest_system_time + erlang_distr(ke,me);
m.number_accepted_services = m.number_accepted_services + 1;

....

end

nat net lst est ebt lst est ebt nat net nar nrr sbt qwt
arrival (server empty, queue empty) a inf - inf inf a a inf exp a erl a +1 = = =

arrival (server busy, queue empty) a b (> a) - c inf a c a exp a b +1 = = a
arrival (server busy, queue busy) a b (> a) - c d a c d exp a b = +1 = =

departure (queue empty) a b (< a) - c inf b inf inf a inf = = +(b-c) =
departure (queue busy) a b (< a) - c d b b inf a erl b = = +(b-c) +(b-d)

event current state next state next event monitor

16 November 2018

Example: Queueing Systems

Random Variables; (Monte Carlo) Simulation 14

function [s,e,m] = transition_s1q1(s,e,m,mean,ke,me);

....
% arrival when server busy and buffer empty
elseif e.next_arrival_time <= e.next_exit_time && ...

s.entry_buffer_time == inf
s.latest_system_time = e.next_arrival_time;
s.entry_buffer_time = e.next_arrival_time;
e.next_arrival_time = s.latest_system_time + expo_distr(mean);
m.number_accepted_services = m.number_accepted_services + 1;

....

end

nat net lst est ebt lst est ebt nat net nar nrr sbt qwt
arrival (server empty, queue empty) a inf - inf inf a a inf exp a erl a +1 = = =

arrival (server busy, queue empty) a b (> a) - c inf a c a exp a b +1 = = a
arrival (server busy, queue busy) a b (> a) - c d a c d exp a b = +1 = =

departure (queue empty) a b (< a) - c inf b inf inf a inf = = +(b-c) =
departure (queue busy) a b (< a) - c d b b inf a erl b = = +(b-c) +(b-d)

event current state next state next event monitor

16 November 2018

Example: Queueing Systems

Random Variables; (Monte Carlo) Simulation 15

function [s,e,m] = transition_s1q1(s,e,m,mean,ke,me);

....
% arrival when server busy and queue full
elseif e.next_arrival_time <= e.next_exit_time &&...

s.entry_buffer_time < inf
s.latest_system_time = e.next_arrival_time;
e.next_arrival_time = s.latest_system_time + expo_distr(mean);
m.number_rejected_services = m.number_rejected_services + 1;

....

end

nat net lst est ebt lst est ebt nat net nar nrr sbt qwt
arrival (server empty, queue empty) a inf - inf inf a a inf exp a erl a +1 = = =

arrival (server busy, queue empty) a b (> a) - c inf a c a exp a b +1 = = a
arrival (server busy, queue busy) a b (> a) - c d a c d exp a b = +1 = =

departure (queue empty) a b (< a) - c inf b inf inf a inf = = +(b-c) =
departure (queue busy) a b (< a) - c d b b inf a erl b = = +(b-c) +(b-d)

event current state next state next event monitor

16 November 2018

Example: Queueing Systems

Random Variables; (Monte Carlo) Simulation 16

function [s,e,m] = transition_s1q1(s,e,m,mean,ke,me);

....
% departure when queue is empty
elseif e.next_exit_time <= e.next_arrival_time &&...

s.entry_buffer_time == inf
aux = e.next_exit_time - s.entry_server_time;
s.latest_system_time = e.next_exit_time ;
s.entry_server_time = inf;
m.server_busy_time = m.server_busy_time + aux;
e.next_exit_time = inf;

....
end

nat net lst est ebt lst est ebt nat net nar nrr sbt qwt
arrival (server empty, queue empty) a inf - inf inf a a inf exp a erl a +1 = = =

arrival (server busy, queue empty) a b (> a) - c inf a c a exp a b +1 = = a
arrival (server busy, queue busy) a b (> a) - c d a c d exp a b = +1 = =

departure (queue empty) a b (< a) - c inf b inf inf a inf = = +(b-c) =
departure (queue busy) a b (< a) - c d b b inf a erl b = = +(b-c) +(b-d)

event current state next state next event monitor

16 November 2018

Example: Queueing Systems

Random Variables; (Monte Carlo) Simulation 17

function [s,e,m] = transition_s1q1(s,e,m,mean,ke,me);
....
% departure when queue is full
elseif e.next_exit_time <= e.next_arrival_time &&...

s.entry_buffer_time < inf
aux_1 = e.next_exit_time - s.entry_server_time;
aux_2 = e.next_exit_time - s.entry_buffer_time;
s.latest_system_time = e.next_exit_time;
s.entry_server_time = s.latest_system_time;
s.entry_buffer_time = inf;
e.next_exit_time = s.latest_system_time + erlang_distr(ke,me);
m.server_busy_time = m.server_busy_time + aux_1;
m.queue_wait_time = m.queue_wait_time + aux_2;

else printf("unforeseen situation!!!"); end
end

nat net lst est ebt lst est ebt nat net nar nrr sbt qwt
arrival (server empty, queue empty) a inf - inf inf a a inf exp a erl a +1 = = =

arrival (server busy, queue empty) a b (> a) - c inf a c a exp a b +1 = = a
arrival (server busy, queue busy) a b (> a) - c d a c d exp a b = +1 = =

departure (queue empty) a b (< a) - c inf b inf inf a inf = = +(b-c) =
departure (queue busy) a b (< a) - c d b b inf a erl b = = +(b-c) +(b-d)

event current state next state next event monitor

• Simulation of a queueing process is an example of a program with some degree of
complexity, that poses difficulties in debugging.

• A general rule in a program structured by means of nested functions is to
guarantee that no function is used before it is fully debugged.

• In. addition, auxiliary functions may be (temporarily) used to obtain generated in
the process so as to be analysed and give clues to potential mistakes.

23 November 2018

Debugging Programs

Random Variables; (Monte Carlo) Simulation 18

simulate

transitioninitial
state

initial
event

initial
monitor

expo_distr

erlang_distr

stop
simulation

show results

monitor system

• The progress of the simulation may be monitored during the transitions, to check
whether they are modelling correctly the system intended behaviour:

• Note that the information should be presented in an “ergonomic” way, so as to be
easily understood.

23 November 2018

Debugging Programs

Random Variables; (Monte Carlo) Simulation 19

function monitor_s1q1_transitions(s,e,m)
printf("time = %i, server = %i, buffer = %i\n", ...

s.latest_system_time, ...
s.entry_server_time, ...
s.entry_buffer_time)

printf("arrival = %i, exit = %i\n", ...
e.next_arrival_time, ...
e.next_exit_time)

printf("accept = %i, reject = %i, busy = %i, wait = %i\n", ...
m.number_accepted_services, ...
m.number_rejected_services, ...
m.server_busy_time, ...
m.queue_wait_time)

end

• The results from simulation may be shown in an “ergonomic form”. , for example
by means of function show_s1q1_results, shown below (first the data to show):

23 November 2018

Debugging Programs

Random Variables; (Monte Carlo) Simulation 20

function show_s1q1_results(s,e,m);
final_simul_time = s.latest_system_time;
tot = m.number_accepted_services + m.number_rejected_services;
total_nb_requests = tot;
accepted_requests = m.number_accepted_services;
fraction_accepted = 100 * accepted_requests / total_nb_requests;
rejected_requests = m.number_rejected_services;
fraction_rejected = 100 * rejected_requests / total_nb_requests;
mean_service_time = m.server_busy_time / accepted_requests;
mean_arrival_time = final_simul_time / total_nb_requests;

total_busy_time = m.server_busy_time;
fraction_busy_time = 100 * total_busy_time / final_simul_time;
mean_waiting_time = m.queue_wait_time / accepted_requests;
...

end

• The data is then shown in the terminal:

23 November 2018

Debugging Programs

Random Variables; (Monte Carlo) Simulation 21

function show_s1q1_results(s,e,m);
...
printf("\n")
printf("\n---Results of Simulation:\n");
printf(" total_nb_requests = %i\n", total_nb_requests);
printf(" total_simul_time = %i\n", final_simul_time);
printf(" total_nb_accepted = %i (%4.1f of total)\n",...

accepted_requests,...
fraction_accepted);

printf(" total_nb_rejected = %i (%4.1f of total)\n",...
rejected_requests,...
fraction_rejected);

printf(" server_busy_time = %i (%4.1f of total)\n",...
total_busy_time,...
fraction_busy_time);

printf(" mean_service_time = %4.2f\n", mean_service_time);
printf(" mean_arrival_time = %4.2f\n", mean_arrival_time);
printf(" mean_waiting_time = %4.2f\n", mean_waiting_time);
printf("\n")

end

