Lab. 09 - Graph Problems (1)

10.1 Graph Reading

Consider the undirected weighted graphs specified in the zip file **graphs.zip**, with the following DIMACS format

```
nn na
ni nj wij
```

where the first line indicates the number **nn** of nodes and the number **na** of arcs, and the subsequent lines specify all the **na** arcs, each by a triple <ni, nj, wij> where **ni** and **nj** are the node identifiers and wij the weight of the connecting arc. Note that the graphs are undirected, and so for any arc between nodes i and j there is an arc between nodes j and i with the same weight.

Specify a function with signature

def dimacs read(filename)

that reads a graph with the above DIMACS format from a file with name filename, and returns the adjacency matrix A of the represented graph.

Note: The files format assume that the nodes are numbered from 1 no nn.

10.2 Graph Writing

Consider an undirected graph specified by its adjacency matrix A. Specify a function with signature

that prints the graph **M** in a file with the given **filename**, with the DIMACS format (see above). Test this function with the graphs obtained in the previous question.

10.3 Graph Encodings

a) Implement function with signature

```
def matrix_to_dicts_convert(A)
```

that, for a given A, the adjacency matrix encoding of a graph, returns its dictionary list encoding.

b) Implement function with signature

```
def dicts_to_matrix_convert(D)
```

that, for a given **D**, the dictionary list encoding of a graph, returns its adjacency matrix encoding.

Test your codes with the matrix shown in the slides of class 9.

10.4 Subgraph Projection

Consider an undirected graph specified by its adjacency matrix A. Implement a function with signature

def subgraph_projection(A, Nodes)

that returns the adjacency matrix S of the subgraph of A obtained by its projection to the list Nodes.

Note 1: Notice that matrix S of the subgraph should have the nodes numbered from 0. If A encodes a graph with nodes 0..9, and Nodes is [2,5,7] than S has 3 rows and columns and Nodes is a mapping from the new nodes to the original ones (i.e. nodes 0/1/2 of S are the original nodes 2/5/7 of A).

Note 2: When the **n** nodes of a graph have labels different from the natural numbers 0..n-1, than the graph should be represented by a pair G = (A,M) where A is an adjacency matrix and M the mapping of the nodes to their intended labels.

10.5 Connected Components (1)

Consider an undirected graph specified by its adjacency matrix **A**. Specify a function with signature **def connected with(k,A)**

that returns the connected component C that includes k, i.e. a list of the nodes of the graph that are connected to node k (including k). Test this function with graphs G1 and G2 given in the theory class (slides 11 and 12)

Note 1: Adapt function **connected** from the slides of class 9 to obtain the nodes of the sub-graph that are connected to k.

10.6 Connected Components (2)

Consider an undirected graph specified by its adjacency matrix **A**. Specify a function with signature **def connected components(A)**

that returns a list, Cs, with is a partition of the nodes of A corresponding to its connected components.

Suggestion: Iterate the previous function, with nodes left out from previous connected components.