
Graphs: Basic Concepts

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semestre 2019/2020

Graphs
• Graphs are a very common data structure that is useful to model a number of

“network” applications, where a number of “agents” have direct connections
between (some of) them.

• They range from networks of physical services (telecommunications, roads, water
distribution) to more virtual services (e.g. social networks) or even to more abstract
models (neighbouring countries, teams playing in several competitions, …).

• Formally, a graph is defined as a pair <V,E> where

• V is a set of vertices (or nodes)

• E is a set of edges (or arcs), each connecting two of the vertices

• Two characteristics of the edges, weights and direction, might be considered,
leading to different types of graphs:

• Weighted Graphs – Each edge has a weight, usually a positive number

• Directed Graphs – Each edge has a direction, connecting one vertice to
another, but not the other way round

Graphs: Basic Concepts29 November 2019 2

Graphs

Example:

• An unweighted, undirected graph

• A weighted, undirected graph

• A weighted, directed graph

a
b

c

e
d

g
f

7 8

57

15

11

98

6

95

• A path is a sequence of connected vertices.

• Example: Path: a à b à e à g

• Note: A path is directional, even if the underlying graph is not.

• A cycle is a path starting and ending in the same vertex.

• Example: Cycle: a à b à d à a

Graphs: Basic Concepts29 November 2019 3

Graphs
• Two nodes are adjacent (or neighbours) if

there is an edge between them.
• Example: adjacent(e,f) but not adjacent(a,g)

• The degree of a vertex is the number of its
adjacent vertices

• Example: degree(e) = 5, degree(b) = 4

a
b

c

e
d

g
f

• A graph ordering is the assignment of a total order to the nodes of the graph,
(i.e. the assignment of values 1..n to the n nodes of a graph)

• Example: O = a < b < c < d < e < f < g

• The width of a node given a graph ordering, is the number of adjacent nodes
lower in the ordering.

• Example: width(e,O) = 3 , i.e. nodes b,c,d are lower in O

• The width of a graph given a graph ordering, is the maximum width of its
nodes given that ordering.

• Example: width(G,O) = 3 , since e is the node with highest width in O

• The width of a graph is the minimum width of the graph over all its orderings.
Graphs: Basic Concepts29 November 2019 4

Properties of Graphs
• In general, given a graph, there are several problems that may be considered to

compute some properties of the graphs, such as:

• Connectedness: Is there a path connecting any two vertices of a graph?

• What is the shortest path (number of edges, sum of the edges weights)
between any two vertices?

• What is the width of a graph?

• Are there cycles in the graph, or is it a tree (i.e. with a unique path between
two vertices, or equivalently the graph has width 1)?

• What is the shortest spanning tree?

• Are there Hamiltonian cycles in the graph (including all vertices only once –
except the initial/final vertex). Which one(s) is the shortest?

• Are there cliques in the graph - subset of the graph where any two nodes are
adjacent). Which one(s) is maximal (have more nodes).

• Is it possible to colour a graph with a set of colours, such that two adjacent
vertices have different colours? What is the minimum cardinality of such set?

Graphs: Basic Concepts29 November 2019 5

Properties of Graphs
• The problems above, and many others, are typically posed in many applications,

and so a number of algorithms have been studied to solve them.

• But before studying some of these algorithms, it is important to adopt a
representation (or encoding) for the implementation of a graph.

• Here we will present the two most common encodings:
• Adjacency matrix.
• Adjacency lists.

• The adjacency matrix is possibly the most intuitive way of implementing a graph.
Given a graph with n vertices and some graph ordering, the adjacency matrix is a
square n ´ n Boolean matrix G, whose elements Gi,j contain information about
the edges between nodes i and j.
• In an unweighted graph, the elements are Booleans
• In a weighted graph, the elements are the weights
• In a undirected graph the matrix is symmetric, otherwise it is usually

asymmetric.

Graphs: Basic Concepts29 November 2019 6

a b c d e f g
a 0 1 -1 1 -1 -1 -1
b 1 0 1 1 1 -1 -1
c -1 1 0 -1 1 -1 -1
d 1 1 -1 0 1 1 -1
e 0 1 1 1 0 1 1
f -1 -1 -1 1 1 0 1
g -1 -1 -1 -1 1 1 0

Graphs

Example:

a
b

c

e
d

g
f

7 8

57

15

11

98

6

95

Graphs: Basic Concepts29 November 2019 7

a b c d e f g
a 0 7 -1 5 -1 -1 -1
b 7 0 8 9 7 -1 -1
c -1 8 0 -1 5 -1 -1
d 5 9 -1 0 15 6 -1
e 0 7 5 15 0 8 9
f -1 -1 -1 6 8 0 11
g -1 -1 -1 -1 9 11 0

a b c d e f g
a 0 7 -1 -1 -1 -1 -1
b -1 0 8 9 7 -1 -1
c -1 -1 0 -1 -1 -1 -1
d 5 -1 -1 0 15 6 -1
e 0 -1 5 -1 0 -1 9
f -1 -1 -1 -1 8 0 11
g -1 -1 -1 -1 9 -1 0

• The adjacency matrix is a very inefficient representation of sparse graphs, i.e. where
only a “few” of the potential arcs are presented. In this case, of the n2 elements of the
matrix only a (small) fraction of them are non-zero.

• To avoid this waste of space, one may adopt an adjacency lists, i.e. a set of lists
each representing, for each node, the information about its neighbours (taking into
account the directedness).

• The space required is thus O(|E|) which is much less than O(|V2|) for sparse graphs.

Properties of Graphs

a
b

c

e
d

g
f

7 8

57

15

11

98

6

95

Graphs: Basic Concepts29 November 2019 8

a b:7
b c:8 d:9 e:7
c
d a:5 e:15 f:6
e e:5 g:9
f e:8 g:11
g

a b c d e f g
a 0 7 -1 -1 -1 -1 -1
b -1 0 8 9 7 -1 -1
c -1 -1 0 -1 -1 -1 -1
d 5 -1 -1 0 15 6 -1
e 0 -1 5 -1 0 -1 9
f -1 -1 -1 -1 8 0 11
g -1 -1 -1 -1 9 -1 0

Types of Algorithms
• As we will see, some of these problems require algorithms whose asymptotical

complexity is polynomial on n, the input size of the problem. Assuming that
reads from and writes to memory are basic operations, polynomial algorithms
require O(nk) basic operations, where k is an integer, typically small.

• Problems that can be solved by polynomial algorithms are said to be in class P.

• Other algorithms have exponential complexity, i.e. require O(kn) basic operations.
Problems that can only be solved by these are said to be in class NP.

• Take a computer where each elementary operation takes 1 nsec. The following
table shows the “practical” consequences of the problem being in P or in NP. Here
the size n is the size of an input vector or matrix, or the size |V| or |E| of a graph.
n1: Search in a vector; n2: Sorting (naïf) a vector; n3: Matrix multiplication

Graphs: Basic Concepts

n 10 20 30 40 50 60 70
n1 10 nsec 20 nsec 30 nsec 40 nsec 50 nsec 60 nsec 70 nsec
n2 100 nsec 400 nsec 900 nsec 1.6 µsec 2.5 µsec 3.6 µsec 4.9 µsec
n3 1 µsec 8 µsec 27 µsec 64 µsec 125 µsec 216 µsec 343 µsec
2n 1 µsec 1 msec 1 sec 18 min 13 days 37 years 37 K years

29 November 2019 9

Connectedness of Graphs
Problem (Connectedness): Check whether a graph G is connected.

• The definition of connectedness of a graph depends on its type:

• An undirected graph is connected if there is a path between any two nodes
of the graph.

• A directed graph is strongly connected is there is a path between any two
nodes of the graph, respecting the direction of the its arcs.

• A directed graph is weakly connected is there is a path between any two
nodes of the corresponding undirected graph.

• Here we will study the case for the undirected graphs, which is easier to decide,
since paths (being reflexive, symmetric and transitive) create classes of
equivalence.

• We will thus present an algorithm to check the connectedness of undirected
graphs, by checking whether all its nodes are n the same equivalence class.

Graphs: Basic Concepts29 November 2019 10

Properties of Graphs

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

Fr = [a]; Out = [b,c,d,e,f,g,h,i,j,k]

- NewFr = [b,c,d] NewOut = [e,f,g,h,i,j,k]

Fr = [b,c,d]; Out = [e,f,g,h,i,j,k]

- NewFr = [g,h,e,f] NewOut = [i,j,k]

Fr = [g,h,e,f] Out = [i,j,k]

- NewFr = [i,j] NewOut = [k]

Fr = [i,j] Out = [k]

- NewFr = [k]; NewOut = []

Fr = [k]; Out = []

- NewFr = []; NewOut = []

Fr = []; Out = []

Graphs: Basic Concepts29 November 2019 11

Is the graph connected?

The Out list is empty. The graph is connected!

Properties of Graphs

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

a

d
b

g h

c e

i

j

f

k

Fr = [a]; Out = [b,c,d,e,f,g,h,i,j,k]

- NewFr = [b,d]; NewOut = [c,e,f,g,h,i,j,k]

Fr = [b,d]; Out = [c,e,f,g,h,i,j,k]

- NewFr = [g,e,f]; NewOut = [c,h,i,j,k]

Fr = [g,e,f]; Out = [c,h,i,j,k]

- NewFr = [i,j]; NewOut = [c,h,k]

Fr = [i,j]; Out = [c,h,k]

- NewFr = [k]; NewOut = [c,h]

Fr = [k]; Out = [c,h]

- NewFr = []; NewOut = [c,h]

Fr = []; Out = [c,h]

Graphs: Basic Concepts29 November 2019 12

Is the graph connected?

The Out list is NOT empty. The graph is NOT connected!

Properties of Graphs
• The algorithm presented can be implemented as the following function (where all

sets are implemented as lists. In fact set In is not needed and is not considered).

• List Fr is initialised with one arbitrary node (here we chose node 0)

• List Out is initialised with the other nodes.

• The iterations proceed while the frontier (list Fr) is not empty.

• In every iteration, both lists Fr and Out are updated.

• After the last iteration, the connectedness is equated to having the Out list empty
(both the connected Boolean and the remaining Out list are returned).

def connected(G):
"""This function returns a Boolean that is True if Graph G
is connected and False otherwise"""
Fr = [0]
Out = [i for i in range(1,len(G))]
while len(Fr) > 0:

move nodes from Out to Fr if connected
...

return (len(Out) == 0, Out)

Graphs: Basic Concepts29 November 2019 13

Properties of Graphs
• The core of the algorithm is the updating of lists Fr and Out in every iteration.

• The new frontier (list NewFr) is initialised to empty.

• Then every node in Out is checked for a neighbour in the frontier (list Fr).

• If there is one such node, the node is appended to list NewFr.

• After all Out nodes have been checked,

• All nodes in the new frontier are removed from list Out.

• The list Fr is updated with the nodes of the new frontier.

while len(Fr) > 0:
move nodes from Out to Fr if connected
NewFr = []
for k in Out:

if move_to_Frontier(k, G, Fr):
NewFr.append(k)

for k in NewFr:
Out.remove(k)

Fr = NewFr

Graphs: Basic Concepts29 November 2019 14

Properties of Graphs
• The complete function is shown bellow:

Graphs: Basic Concepts29 November 2019 15

def connected(G):
"""This function returns a Boolean that is True if Graph G
is connected and False otherwise"""
Fr = [0]
Out = [i for i in range(1,len(G))]
while len(Fr) > 0:

move nodes from Out to Fr if connected
NewFr = []
for k in Out:

if move_to_Frontier(k, G, Fr):
NewFr.append(k)

for k in NewFr:
Out.remove(k)

Fr = NewFr
return (len(Out) == 0, Out)

Properties of Graphs
• The function above, uses an auxiliary function, move_to_Frontier, that tests

whether a node, k (from list Out) is connected to a node in the frontier (list Fr),
according to the given graph G.

• This function can be implemented straightforwardly:

• For every node in Fr the connection is tested.

• If the connection exists (an arc with value ≥ 0) the function returns True.

• If no connection exists with any node in Fr, the function returns False.

def move_to_Frontier (k, G, Fr):
""" Moves node k from the Out List to the Frontier list if
there is a link between any node in the Frontier and k"""
for i in Fr:

if G[i][k] >= 0:
return True

return False

Graphs: Basic Concepts29 November 2019 16

Properties of Graphs
• In this case the worst-case time complexity is obtained by analysing the algorithm

for a Graph with n nodes.

• Since a node can only be in the frontier (Fr list) during one iteration of the while
loop (in the next iteration it removed from the list), the while loop can only be
executed n times.

• Each node k can thus be analysed at most n times (with move_to_Frontier).

• To check it against all the nodes in the frontier Fr, requires at most n comparisons.

• Hence, the number of comparisons is at most n*n*n and the worst case complexity
of the algorithm is no more than

O(n3).

Graphs: Basic Concepts29 November 2019 17

...
while len(Fr) > 0:

for k in Out:
if move_to_Frontier(k, G, Fr):
...

Properties of Graphs
• In fact, the number of comparisons is less than n2, since in each iteration there is

at least one less node to be considered (i.e. removed from the Fr list).

• Hence, assuming there is only one node in list Fr, the actual number of
comparisons is
• (n-1) in the 1st execution of the loop
• (n-2) in the 2nd execution of the loop
• …
• 1 in the n-1th execution of the loop

• Hence the number of comparisons is (n-1)+(n-2)+…+ 1 i.e (1+n-1)(n-1)/2 ≈ n2/2

• Of course there are operations for addition and removal of elements in the lists, but
these can be at most n operations in each of the while loop, hence O(n2)
operations which do not change the asymptotic complexity of

O(n3).
Graphs: Basic Concepts29 November 2019 18

while len(Fr) > 0:
for k in Out:

if move_to_Frontier(k, G, Fr):

Properties of Graphs
• Note that the complexity that we considered is a worts case complexity.

• For example if the fisrt node used in the Fr list is not connected to any other node,
than only n-1 comparisons between the node and the other are made, the
complexity becomes

O(n).

• On the other hand, if half the out nodes is moved to the frontier in each iteration,
there will be log(n) iterations of the while loop, each with (n/2, n/4, …, 1 nodes in
the Fr and Out lists.

• Then the number of comparisons are

n/2 * n/2 + n/4 * n/4 + n/8 * n/8 … + n/n * n/n =

= n2 (1/ 22 + 1/ 24 + 1/ n2n)

= n2 / 22 (1 + 1/ 22 + 1/ 2n) ≈ 1.5 *n2 / 4

and the complexity becomes, approximately,

O(n2)

Graphs: Basic Concepts29 November 2019 19

