
Lab. 8x – Overview of Past Exercises

0. Read Vectors from files

Use the function previously defined to read files “dados_X.txt”, for different values of X, available

in the web site and obtain the corresponding lists lists L_X.

def read_vector_from_file(fname):

1. Optimise Bubble Sort

In the implementation of Bubble Sort presented in the slides of class 6, the procedure executes exactly

n-1 sweeps (outer loop – for k in range(n-1:1:-1)), each over decreasingly ranges of the vector

(inner loop – for i in range(0,k)). However, if the vector is already sorted, or if a prefix of the

vector is already sorted, sweeping the bubble does not change the vector any longer, and only wastes

time. Adapt the function presented in the slides of class 6, so that this inefficiency is eliminated, using

signature

def bubble_sort_info(L).

To check the efficiency of the sorting, the function returns a quadruple (S, nb, ns, tm), where

• S is the sorted list, and

• nc is the number of comparisons made, and

• ns is the number of swaps made while partitioning the list.

• tm is the process time (Note: use process_time() function from module time).

2. Adapt Quick Sort

Adapt the implementation of Quick Sort presented in the slides of class 7, with a function with

signature

def quick_sort_info(L).

The function returns a quadruple (S, nb, ns, tm), where

• S is the sorted list, and

• nc is the number of comparisons made, and

• ns is the number of swaps made while partitioning the list.

• tm is the process time (Note: use process_time() function from module time)

Check the correctness of your implementation with lists L_x.copy().

3. Searching Elements in an Array

Adapt functions find_unsorted(x, L) , find_sorted(x, L), that return a pair (p, c) where

• p is the first position in list L where x is found (p = -1, if x is not present in the list), and

• c is the number of comparisons between x and elements of the list.

The first function assumes the list L is not sorted, whereas the second assumes L to be sorted and

adopts a divide-and conquer algorithm.

4. Monte-Carlo Simulation of a Simple Queue System

Assume a server whose service time follows an Erlang distribution (2,3) with customers arriving

according to an exponential distribution of mean 5. Compare the number of accepted and rejected

customers in case they may queue or not waiting for the server to be available. The queue gas q

positions for customers to stay on waiting. Use and adapt (for the case with a queue), the state

transition table below.

state variables

busy type busy n_accepted n_rejected type time

variables updateState

Variables monitoring variables

event

(at time t)
next event (s)

arrival t + exp(l)

leaving t + Er(n,l)
FALSE -> TRUE +1 =arrival

TRUE arrival = = +1 arrival t + exp(l)

TRUE leaving -> FALSE = = - -

