
M.Sc. in Mathematics (Finance)
2020/2021, 1st semester

Computational Methods
Project 1 – Solving the Knapsack Problem (KP)

1. Introduction

The Knapsack Problem (KP) is a well-known problem that may be formulated as follows:

Given a set G of n items, each with a value (vi) and weight (wi), find a subset of the goods

with maximum value (i.e. the sum of the goods in the subset) whose combined weight does

not exceed the capacity of the knapsack.

2. Objective

Your goal is to get (approximate) solutions of instances of the KP, specified in files (as that shown) with the

following format (note: the field separators are tabs: ‘\t’):

1. The first line indicates the capacity of the knapsack (an integer).

2. Each of the other lines specify an item, by a triple <ni, wi, vi> where ni is an item id (a string), wi the

weight of the item (an integer) and vi the value of the item (also an integer).

In the example, the optimal solution is the subset K = {‘it_1’,’it_2’,’it_7’}, with value v = 336 (71+140+125)

and weight w = 50 (12 + 20 + 18) that does not exceed the knapsack capacity (it is equal in this case).

3. Implementation Notes

a. Implement a function with signature

def knapsack(fname, mode)

where, for the knapsack instance stored in a file with name fname, returns a list of items’ ids that are a

(approximate) solution of the problem, together with the sum of the values and the weight of the selected

items.

b. Your function should store the items read from the file with fname, in a list S of triples <ni, wi, vi>, where

ni is the item number, wi the weight of the item and vi the value of the item. Suggestion: Sort the list by

decreasing values of the ratio wi /vi (the first items of the list are the best candidates for the knapsack).

c. Then you should fill K, the list that encodes the intended subset of S, by repeatedly, select an item from

S (not yet selected), and appending it to K, taking into account that the weight of the items in S should

not exceed the capacity.

d. To select the next node to append to S you should implement several different heuristics to select the next

item, specified in parameter mode (a “_” means the value is not relevant):

1) mode = (1,_,_): Choose the item, among those not yet chosen, that has the higher ration vi/wi and

does not exceed the remaining capacity of the knapsack;

2) mode = (2, nit,_): Choose arbitrarily an item, among those not yet chosen. In this case, repeat nit

times this procedure, and report the best solution obtained.

3) mode = (3, nit, nb): Select arbitrarily, among the nb best items (i.e. those with better vi/wi ratio),

that do not exceed the remaining capacity (or less if this number of remaining items is less than nb).

Repeat the procedure nit times, and report the best solution obtained.

4) mode = (4, nit, nb): Select, among the nb best items that do not exceed the remaining capacity

(or less if this number of remaining items is less than nb), with a probability that is proportional to

their vi/wi ratio. Repeat the procedure nit times, and report the best solution obtained.

4. Final Report

Write a small report explaining how you implemented the knapsack function, namely the auxiliary functions

and data structures that you used. Moreover, report the solutions obtained in instances of the problem, obtained

from file knapsacks.zip.

The report, as well as the files with your code, must be sent by email to the lecturer (pb@fct.unl.pt) with

subject project_mc_1_by_XXXXX+YYYYY (where XXXXX and YYYYY are the numbers of the students

- max 2 per group), no later than Sunday, 20 December at 23:59.

50
it_6 43 316
it_1 12 71
it_9 15 105
it_2 20 140
it_7 18 125

Knapsack_1.txt

mailto:pb@fct.unl.pt

