
More on Functions; WHILE instructions

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semestre 2020/2021

2 October 2020 3: More on Functions; WHILE instruction 1

2 October 2020 3: More on Functions; WHILE instruction 2

Iterative Execution - WHILE
• In many cases, although a block of instructions is to be repeated, it is not known

before hand how many times it should be iterated.

• For example, to find an element in a vector (or a word in a sequence of text), one
might not have to look at all the elements of the array/matrix/text, since the element
may be found before. In this case, the use of a FOR instruction (although possible)
might not be desirable.

• In these cases, the WHILE instruction should be used. The WHILE instruction has
the following syntax in Python

while <CONDITION>:
WHILE-BLOCK

2 October 2020 3: More on Functions; WHILE instruction 3

Iterative Execution - WHILE

• The behaviour of this instruction is quite intuitive. When the program reaches this
instruction

1. The CONDITION is assessed

2. If the condition is not satisfied the WHILE-BLOCK is not executed and the
program “jumps” to the next instruction.

3. Otherwise, the WHILE-BLOCK is executed.

4. After executing the block, the program goes back to step 1 (to assess the
CONDITON again, …).

• NOTE: Care has to be taken in the specification of the condition and the WHILE-
BLOCK. In particular, if this block does not change the variables involved in the
CONDITION, so as to make it eventually false, the program loops forever!

while <CONDITION>:
WHILE-BLOCK

2 October 2020 3: More on Functions; WHILE instruction 4

Euclid’s Algorithm
• This instruction is illustrated with the Euclid's algorithm that finds the greatest

common divider of two integers, with the following algorithm.

1. Take the two numbers, and make them A and B, ensuring that A is no less than B.

2. While A is greater than B

• Obtain C, the difference between A and B (i.e. C = A – B);

• Rename the numbers B and C, such that A becomes the larger of them and B
the smallest.

• Check again the condition and iterate as many times as needed.

• When A becomes equal to B, the iterations stop.

• The GCD of the initial numbers is A.

2 October 2020 3: More on Functions; WHILE instruction 5

Euclid’s Algorithm
Example:

• Let the numbers be 270 and 72, and see the evolution of the values of a, b and c.

• Hence 18 is the GCD of 270 and 72.

a
270
198
126
72
54
36
18

b
72
72
72
54
18
18
18

c = a-b
198
126
54
18
36
18
0

2 October 2020 3: More on Functions; WHILE instruction 6

Euclid’s Algorithm - WHILE
• The Euclid’s Algorithm can be implemented with the following function:

def euclid(p, q):
""" computes m, the greatest common divider of p and q."""
a = max(p,q)
b = min([p,q])
while a > b:

c = a - b
if c < b:

a = b # the order between a and b
b = c # cannot change, i.e. a >= b

else:
a = c # and b remains b

print("a =", a,"; b =", b)
return a # since it is not a > b, then a = b

2 October 2020 3: More on Functions; WHILE instruction 7

Euclid’s Algorithm - WHILE
• A trace of the function execution shows how the values of f2, f1 and f are maintained

In : m = euclid(270, 72)
a = 198 ; b = 72
a = 126 ; b = 72
a = 72 ; b = 54
a = 54 ; b = 18
a = 36 ; b = 18
a = 18 ; b = 18
In : m
Out: 18

...
while a > b:

c = a – b
if c < b:

a = b
b = c

else:
a = c

print("a =", a,"; b =", b)
...

2 October 2020 3: More on Functions; WHILE instruction 8

Iterative Execution - WHILE
• We can go back to the problem referred above of finding a value in a vector.

• In particular we are interested in specifying a function find/2 that takes

• A number as the first argument; and

• A list (vector) as the second argument;

and returns

• The index of the first position in the list where that element appears.

• Note: If there is no such element the function should return None.

• Some examples:

• find(3, [5, 8, 4, 3, 6, 8, 2]) à 3

• find(8, [5, 8, 4, 3, 6, 8, 2]) à 1

• find(9, [5, 8, 4, 3, 6, 8, 2]) à None

2 October 2020 3: More on Functions; WHILE instruction 9

Iterative Execution - WHILE
• Before implementing the function we should design a convenient algorithm to solve

this problem. Informally

• While you have not found it and there is a next element

• Look at the next element of the array to see if it is the intended one

• Report the index of the element where you found it

• Although the skeleton of the algorithm is there, a few points must be taken care

1. Where do we start from

2. What if the element is not in the array

• Firstly, we must guarantee that we look at the first element, … if there is one!

• Secondly, if there are no more elements to look at, the algorithm must return None.

• These issues may be dealt with in the specification of the find/2 function

2 October 2020 3: More on Functions; WHILE instruction 10

Iterative Execution - WHILE
• The algorithm can now be implemented as function find/2, shown below

def find(x, V):
"""this function returns k, the first position, where
v is in array V. It returns None if v is not present."""

i = 0 # start searching at position i = 0

n = len(V)
while i < n and V[i] != x: # while it is worth looking

i = i + 1
if i < n: # x was found in position i

return i
else: # x was not found

return None

2 October 2020 3: More on Functions; WHILE instruction 11

Iterative Execution - WHILE
• A last note on the condition that could have been used in the WHILE

• As we know, trying to read an element of an array past its size reports an error

• Hence it is important that testing the value of the element in a certain index is only done
after being sure that such index is within the bounds of the vector.

• Python short circuits the evaluation of Boolean expressions such as A and B (A or B):

1. Firstly, the Boolean expression A is assessed;

2. If A is False (resp. True) the condition is False (resp. True) and B is not assessed!

3. Otherwise B is assessed.

4. The value of the condition is the value of B.

while i < n and V[i] != x:

In : A = [4, 7, 5]
In : A[4]

IndexError: list index out of range

2 October 2020 3: More on Functions; WHILE instruction 12

WHILE vs. FOR
• When it is known the maximum number of times a cycle might be repeated, an

instruction FOR might be used to force up to this (max) number of cycles

• In this case, when the condition to stop the cycle becomes True (i.e. the value was
found), then the cycle should be interrupted and the index returned

• If the condition is never met, then None is returned.

• In the context of a function, the interruption is achieved with instruction return, (as
below) that immediately ends the function execution.

def find_2(x, V):
"""this function returns k, the first position, where
v is in array V. It returns None if v is not present."""
n = len(V)
for i in range(0,n): # search indices i: 0 <= i < n

if x == V[i]: # if the element is found in position i
return i # return the value of i

return None # if x is not found return None

2 October 2020 3: More on Functions; WHILE instruction 13

Nested Functions
• As functions become more complex, their design relies on other functions, either

system defined functions or user functions previously defined.

• For example if the sin/1 function has been defined (in library math as m) then
function tg/1 could have been defined in the obvious way (with the same meaning of
function m.tan)

• As we already knew, functions can call other functions. Assuming the called
functions terminate, the calling functions will also terminate.

• However, what happens when a function calls itself?

def tg(x):
"""this function returns the tangent of angle x,
computed from the sin of that angle"""
s = m.sin(x)
c = sqrt(1-s**2)
if c != 0

t = s/c;
else:

t = m.inf
return t

2 October 2020 3: More on Functions; WHILE instruction 14

Recursive Functions: Factorial
• When functions call themselves, i.e. they are defined recursively, one must be

careful so as to guarantee that they do terminate.

• Take for example the case of the function fact/1 defined recursively to obtain the
factorial of a non-negative integer, i.e. the same as function factorial, pre-defined in
Python library math.

• This functionality can of course be defined iteratively, by means of the
accumulation technique seen in the previous lecture, implemented with a for loop.

def fact_ite(n):
"""this function computes iteratively the factorial of n"""
f = 1
for i in range(1,n+1): # i varies from 1 to n

f = f * i
return f

2 October 2020 3: More on Functions; WHILE instruction 15

Recursive Functions: Factorial
• A more “mathematical” definition could however be used to guide the function

implementation:

• Notice that in the implementation of this recursive function, the termination condition
must be tested before the recursive call is made.

• Otherwise the program loops forever!

def fact_rec(n):
"""this function computes recursively the factorial of n"""
if n <= 1:

return 1
else:

return n * fact_rec(n-1)

1 if n <= 1

n * (n-1)! if n > 1
n! =

2 October 2020 3: More on Functions; WHILE instruction 16

Recursive Functions: Factorial
• In fact, Python avoids infinite recursion, by setting a limit on the number of recursive

call that are made.

• The current recursive limit is obtained by method sys.getrecursionlimit().

• This limit may be changed to k, with method sys.setrecursionlimit(k)

• Note: the recursion limit is not exactly the number of recursive calls.

In : import sys
In : sys.getrecursionlimit()
Out: 3000
In : z.fact_rec(30)
Out: 265252859812191058636308480000000
In : sys.setrecursionlimit(55)
In : sys.getrecursionlimit()
Out: 55
In : z.fact_rec(30)
......
RecursionError: maximum recursion depth exceeded in comparison

2 October 2020 3: More on Functions; WHILE instruction 17

Recursive Functions: Greatest Common Divider
• The same recursive technique may be used to define the GCD of two numbers,

taking into account that :

• Note again that in this recursive function, the termination condition is tested before
the recursive call is made

def gcd(p, q):
""" computes m, the greatest common divider
divider of p and q."""
if p == q:

return p
else:
a = min(p,q)
b = abs(p-q)
return gcd(a, b)

m if m = n

gcd(min(m,n),abs(m-n)) if m ≠ n
gcd(m,n) =

2 October 2020 3: More on Functions; WHILE instruction 18

Doubly Recursive Functions: Fibonacci Numbers
• A final example of a function that might be defined recursively returns the nth

Fibonacci element of the series

1, 1, 2, 3, 5, 8, 13, 21, 34, 55 …

• Note that in this series, every element is the sum of the two previous elements.

• Hence the function can be defined recursively as

• There is a (significant) difference in this case, which is the fact that the function is
recursively called twice, as we will analyse later.

• But from a modelling point of view, the recursively defined function can be
implemented as before.

1 if n <= 2

fib(n-1)+ fib(n-2) if n > 2
fib(n) =

2 October 2020 3: More on Functions; WHILE instruction 19

Doubly Recursive Functions: Fibonacci Numbers

• Although the termination condition is tested before the recursive calls are made, now
there are two recursive calls and this has a big impact on the execution

• In particular, many instances of function fib, with the same input arguments, are
called several times, in fact an exponential number of times!

def fib_rec(n):
""" This function computes (doubly) recursively the
nth number of Fibonacci"""
if n <= 2:

return 1
else:

return fib_rec(n-1) + fib_rec(n-2)

1 if n <= 2

fib(n-1)+ fib(n-2) if n > 2
fib(n) =

2 October 2020 3: More on Functions; WHILE instruction 20

Doubly Recursive Functions: Fibonacci Numbers
• In fact, we can trace the computation, and see that the following calls are made

1 if n <= 2

fib(n-1)+ fib(n-2) if n > 2
fib(n) =

7

2 1

4

23

2 1

3

6

23

2 12 1

4

23

2 1

3

5 4

5

• fib(7) is called 1 time
• fib(6) is called 1 times
• fib(5) is called 2 times
• fib(4) is called 3 times
• fib(3) is called 5 times

• In general,
• fib(3) is called fib(n-2) times
• fib(4) is called fib(n-3) times, …

• and fib(n) grows exponentially!
1, 1, 2, 3, 5, 8,13, 21, 34, 55, 89, 144, 233,
377, 610, 987, 1597, 2584, 4181, 6765, 10946, …

2 October 2020 3: More on Functions; WHILE instruction 21

Double Recursive Functions: Fibonacci Numbers
• To avoid this exponential explosion with double recursive functions one should

resource to an iterative version of the algorithm, that although less “elegant” is much
more efficient.

• The iterative version, shown below, maintains the previous 2 fibonacci numbers in
two variables f2 and f1 that are added to obtain the current fibonacci number.

• Note that the iterations only take place for i ≥ 3, and stop for i = n

def fib_ite(n):
""" This function computes iteratively the
nth number of Fibonacci""""
f = 1
f2 = 1
f1 = 1
for i in range(3,n+ 1): # i ranges from 3 to n

f = f2 + f1
print("f2 = ", f2, " + f1 = ", f1 , " -> f = ", f)
f2 = f1
f1 = f

return f

2 October 2020 3: More on Functions; WHILE instruction 22

Double Recursive Functions: Fibonacci Numbers
• A trace of the function execution shows how the values of f2, f1 and f are maintained

In : fib_ite(8)
i = 3 : f2 = 1 + f1 = 1 -> f = 2
i = 4 : f2 = 1 + f1 = 2 -> f = 3
i = 5 : f2 = 2 + f1 = 3 -> f = 5
i = 6 : f2 = 3 + f1 = 5 -> f = 8
i = 7 : f2 = 5 + f1 = 8 -> f = 13
i = 8 : f2 = 8 + f1 = 13 -> f = 21
Out: 21

for i in range(3,n+ 1): # i ranges from 3 to n
f = f2 + f1
print("i = ", i, " : f2 =", f2, "+ f1 = ", f1 , "-> f = ", f)
f2 = f1
f1 = f

return f

