
Optimised Sorting; Graphics

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semestre 2020/2021

30 October 2020

Optimised Sorting in Lists
• Insert Sort and Bubble Sort are useful to sort “small” lists, due to its complexity

O(n2).

• But larger lists require better algorithms.

• A useful strategy often used to solve complex problems is to divide them into
smaller and simpler problems, and combine the solutions of the simpler problems
to obtain the overall solution.

• Hence, several different methods have been proposed to improve this quadratic
complexity, and an animation that shows several such methods is available in URL

https://www.youtube.com/watch?v=kPRA0W1kECg

• This strategy, known as divide-and-conquer principle, is followed by several
advanced sorting algorithms, namely Merge Sort and Quick Sort.

• This principle allows not only a simple (recursive) specification, but usually leads to
a better complexity.

7: Optimised Sorting; Graphics 2

https://www.youtube.com/watch?v=kPRA0W1kECg

30 October 2020

Optimised Sorting in Vectors
• As we will see next, these algorithms have an asymptotical complexity of

O(n � ln(n))

• The difference between this complexity and the quadratic complexity O(n2) of the
Bubble and Insert sort algorithms can be assessed in vectors of variable size n.

7: Optimised Sorting; Graphics 3

n n2 n	•	ln(n)
10 1.000E+02 2.303E+01
100 1.000E+04 4.605E+02
1	000 1.000E+06 6.908E+03
10	000 1.000E+08 9.210E+04
100000 1.000E+10 1.151E+06
1	000	000 1.000E+12 1.382E+07
10	000	000 1.000E+14 1.612E+08

• The number difference in the
number of elementary operations is

• If an elementary operations takes 1
nsec, the time to sort the vector is

n n2 n	•	ln(n)
10 100	nsec 23	nsec
100 10	µsec 460	nsec
1	000 1	msec 6.9	µsec
10	000 100msec 92	µsec
100000 10	sec 1.2	msec
1	000	000 17	min 13.8	msec
10	000	000 28	hor 0.16	sec

30 October 2020

Optimised Sorting in Vectors
• This divide-and-conquer principle is implemented differently in these algorithms.

Merge Sort:

• Divide the list in two sub-lists.

• Sort both the sub-lists.

• Merge their solutions, taking advantage of having them already sorted.

QuickSort:

• Get a pivot.

• Divide the list into two sub-lists, composed of all the values smaller and larger
than the pivot.

• Sort these two sub-lists.

• Append their solutions (virtually, since the vector is always the same)

7: Optimised Sorting; Graphics 4

30 October 2020

Merge Sort
• As any recursive algorithm, the recursive function checks whether the recursion

should stop, i.e. the problem is sufficiently simple to be solved directly.

• Here, we stop when the list has length 1, in which case it is already sorted.

• Otherwise the function calls itself to obtain the sorted versions of the Left and Right
sub-lists, and merges them.

7: Optimised Sorting; Graphics 5

def merge_sort(V):
""" sorts list V with the merge_sort algorithm"""
n = len(V);
if n > 1:

mid = math.floor((n/2) # get mid index
L = merge_sort(V[1:mid]) # left subvector
R = merge_sort(V[mid:]) # right subvector
return merge(L,R)

else:
return V

30 October 2020

Merge Sort
• Merging two sorted lists is straightforward, and is implemented, recursively, below.

• The recursion stops when one of the sub-lists is empty, in which case the merged
list is the “other” sub-list.

• Otherwise, the smaller of the two initial values is the initial value of the solution,
and the rest is obtained by merging the remaining list with the other sub-list.

7: Optimised Sorting; Graphics 6

def merge(L,R):
""" merges two sorted lists L and R"""
if len(L) == 0:

return R
elif len(R) == 0:

return L
elif L[0] <= R[0]:

S = [L[0]]
S.extend(merge(L[1:],R))
return S

else: # R[0] < L[0]
S = [R[0]]
S.extend(merge(L, R[1:]))
return S

30 October 2020

Merge Sort – Complexity
• The asymptotical complexity of Merge Sort can be obtained as follows (assuming a

vector with a size n = 2k; the analysis of other sizes require some rounding that
does not affect the asymptotical complexity).

• The complexity of sorting a list with n = 2k elements is the complexity of sorting two
lists of 2k-1 elements plus merging two lists of 2k-1 elements each. This merge
requires one operation per element, hence requires 2k operations.

• Hence, and abusing notation, we have
C(2k) = 2 • C(2k-1) + 2k

• Now, we can use this recursive definition to obtain
C(2k) = 2 • C(2k-1) + 2k

= 2 [2 • C(2k-2) + 2k-1] + 2k

= 22 • C(2k-2) + 2 • 2k

• More generally we have
C(2k) = 2m • C(2k-m) + m • 2k

7: Optimised Sorting; Graphics 7

30 October 2020

Merge Sort – Complexity
• Now, the complexity of merge_sorting a list with size 1 is 1 (the function just

returns the list).

• Combining the previous result

C(2k) = 2m*C(2k-m) + m*2k

with the fact that for m = k we have

C(2k-k) = C(1) = 1

we finally obtain
C(2k) = 2k • C(2k-k) + k • 2k

= 2k • 1 + k • 2k

= 2k (k+1) ≈ k • 2k

• Hence the asymptotical complexity of O(2k • k). Finally, given that the size of the
initial list is n = 2k (or k = log(n)), we can express the complexity in terms of the
size of the input list and so, the complexity of merge sort for a list of size n is

O(n log(n)).

7: Optimised Sorting; Graphics 8

30 October 2020

Quick Sort
• Although Merge Sort offers good asymptotical complexity, the fact that it requires

the creation of several sub-lists to be merged may be regarded as a significant
disadvantage, specially in case of very large lists.

• An alternative would be to work always in elements of the list, such that only
accesses to the existing list would be required.

• This can of course be done with Merge Sort, but then the merge of two sub-lists
within a list is not very obvious (left as an exercise).

• This is not so with Quick Sort that does not require such merging. Basically, it
analyses a list V of size n and swaps, if necessary, its elements until

• An element, the pivot, occupies some mid position k in the vector (Vk = p).

• All elements V(i), 1 ≤ i < k, are less (or equal) than the pivot (V(i) ≤ p).

• All elements V(j) (k < i ≤ n), are greater (or equal) than the pivot (V(j) ≥ p).

• Then all that is required is to sort (e.g. through a recursive call of Quick Sort) the
sub-lists left and right of position k.

7: Optimised Sorting; Graphics 9

30 October 2020

Quick Sort
• In more detail, Quick Sort adopts the divide-and-conquer principle, but in a

different way. The main steps of the function are the following:

1. An element of the list, p, is selected for pivot. Typically, this is the element that
occurs in the mid position of the vector (but this is not necessarily so).

2. Then the list is swept with two indices starting at both ends of the vector range:
• Index i, starts at 0, and increases during the sweep
• Index j, starts at n-1, and decreases during the sweep

3. During this sweep, elements are swapped when they are not in the right side of
the pivot.

4. The sweep ends when both indices i and j take the same value, k. At this point,
• V(k) = p;
• all values in positions less than i are less or equal than p; and
• all values in positions greater than i are greater or equal than p.

5. Then, all that is needed is to sort the lower and upper sub-lists, which can of
course be done recursively.

6. Some examples illustrate the algorithm.
7: Optimised Sorting; Graphics 10

30 October 2020

Quick Sort

7: Optimised Sorting; Graphics 11

i	=	1 j	=	92 9 51 7 3 8 6 4

i	->	2 9	<-	j1 7 3 8 6 4 2 9 5

swap1 5 3 8 6 4 2 9 7

i	=	2 j	=	91 5 3 8 6 4 9 72

i	->	4 7	<-	j1 5 3 8 6 4 2 9 7

swap8 9 71 5 3 2 6 4

i	=	4 j	=	74 8 9 71 5 3 2 6

i	->	5 6	<-	j9 71 5 3 2 6 4 8

swap1 5 3 2 4 6 8 9 7

i	=	5 j	=	61 5 3 2 4 6 8 9 7

i	->	6 				6 6	<-	j9 71 5 3 2 4 8

k	=	6 stop71 5 3 2 4 6 8 9

lo	=	1;	hi	=	9,	mid	=	5;	pivot	=	V(mid)	=	6

30 October 2020

Quick Sort

7: Optimised Sorting; Graphics 12

lo	=	1;	hi	=	9,	mid	=	5;	pivot	=	V(mid)	=	8

i	=	1 j	=	92 6 51 7 3 9 8 4

i	->	4 9	<-	j1 7 3 9 8 4 2 6 5

swap1 7 3 5 8 4 2 6 9

i	=	4 j	=	91 7 3 5 8 4 2 6 9

i	->	5 8	<-	j1 7 3 5 8 4 2 6 9

swap1 7 3 5 6 4 92 8

i	=	5 j	=	81 7 3 5 6 4 2 8 9

i	->	8 				8 8	<-	j6 4 2 91 7 3 5

k	=	8 				8 stop1 7 3 5 6 4 2 9

• Another example, where the pivot is quite skewed.

• The remaining vectors to sort are quite different in size, but the algorithm is safe.

30 October 2020

Quick Sort
• The basic structure of the quick_sort function is shown below. Note that the

algorithm always deal with the same list, but with different parts of it, namely
between the indices lo and hi (initially, 0 and len(V)-1, respectively).

• The sweeping illustrated before is implemented in function partition, that returns
• the index k where the pivot lies, p = V[k] and the list V updated so that
• elements in indices less/greater than k are less/greater or equal to pivot p.

• Then a recursive call is made to sort the left and right “parts” of V,
• … and the result is returned.

7: Optimised Sorting; Graphics 13

def quick_sort(V):
""" sorts list V with the quick_sort algorithm"""

qs(V, 0, len(V)-1)

def qs(V, lo, hi):
""" quick sorts list V, between indices lo and hi"""
if lo < hi:

(V,k) = partition(V,lo,hi)
V = qs(V, lo, k-1)
V = qs(V, k+1, hi)

return V

30 October 2020

Quick Sort
• The sweeping starts with i = lo and j = hi, and the pivot is arbitrarily selected as the

element in the midpoint of the range. Then, a sweeping proceeds while i < j as follows:

• Indices i/j increase/decrease until an element is found no smaller/larger than the pivot

• They are then swapped, unless V[i] and V[j] both take the value of the pivot

• In the end, the partitioned list is returned together with the index of the pivot

7: Optimised Sorting; Graphics 14

def partition(V,lo,hi):
i = lo
j = hi
mid = round((lo+hi)/2)
pivot = V[mid]
while i < j:

while V[i] < pivot:
i = i + 1

while V[j] > pivot:
j = j - 1

if V[i] > V[j]:
V = swap(V,i,j)

return (V,i)

30 October 2020

Quick Sort

7: Optimised Sorting; Graphics 15

lo	=	1;	hi	=	9,	mid	=	5;	pivot	=	V(mid)	=	6

i	=	1 j	=	91 2 3 5 6 4 9 6 7

i	->	5 8	<-	j1 2 3 5 6 4 9 6 7

i	=>	6 j	=	81 2 3 5 6 4 9 6 7

i	->	7 8	<-	j1 2 3 5 6 4 9 6 7

swap1 2 3 5 6 4 96 7

i	=	7 j	=	84 61 2 3 5 6 9 7

i	=	7 				6 7	<-	j1 2 3 5 6 4 9 7

k	=	7 stop4 91 2 3 5 6 76

swap??1 2 3 5 6 4 9 6 7

• In fact there might be the case that V[i] = V[j] = pivot but i < j , i.e.
• when the list has repeated elements, and one was chosen for pivot.

.

• Hence, when V[i] and V[j] are both equal to the pivot and i < j than i must be
increased to continue the sweep .

30 October 2020

Quick Sort
• Hence, when V[i] = V[j] = pivot but i < j

• i.e. the list has repeated elements, and one was chosen for pivot.
In this case, index i is incremented, as explained in the previous animated
example, so that the sweep proceeds until i = j

7: Optimised Sorting; Graphics 16

def partition(V,lo,hi):
i = lo
j = hi
mid = round((lo+hi)/2)
pivot = V[mid]
while i < j:

while V[i] < pivot:
i = i + 1

while V[j] > pivot:
j = j - 1

if V[i] > V[j]:
V = swap(V,i,j)

k = i;
return (V,k)

if V[i] == pivot and V[j] == pivot:
i = i + 1

30 October 2020

Quick Sort
• Finally, the swapping of two elements of the vector with indices i and j is

implemented in the obvious way.

7: Optimised Sorting; Graphics 17

def swap(V,i,j):
aux = V[i]
V[i] = V[j]
V[j] = aux
return V

30 October 2020

Quick Sort – Complexity
• The asymptotical complexity of Quick Sort can be obtained similarly to what was

done with Merge Sort, but is not so “clear”, since it depends on the returned
position k of the pivot.

• If k is the mid point between lo and hi, then each range of size n = 2k is divided into
two equal subranges of size n/2 -1.

• Hence, the analysis is similar to what was done with Merge Sort, taking into
account that function partition visits all n elements of the range once, and swaps
elements a fraction of n, i.e. a • 2k times (where a is less than 1), hence

C(2k) = 2 • C(2k-1) + (1+a) • 2k

C(2k) ≈ 2 • C(2k-1) + 2k+1

• Doing a similar analysis as before, we note that
C(2k-1) ≈ 2 • C(2k-2) + 2k hence

C(2k) ≈ 2 • [2 • C(2k-2) + 2k] + 2 • 2k

C(2k) ≈ 22 • C(2k-2) + 2k + 2k and, more generally
C(2k) ≈ 2m • C(2k-m) + m • 2 • 2k

7: Optimised Sorting; Graphics 18

30 October 2020

Quick Sort – Complexity
C(2k) ≈ 2m • C(2k-m) + m • 2 • 2k

• Taking into account that C(20) = 1, we make m = k to obtain

C(2k) ≈ 2k • C(2k-k) + k • 2 • 2k

C(2k) ≈ 2k (1+ k • 2)

C(2k) ≈ 2k (k • 2)

• Again, since n = 2k , this means the complexity of the search is

O(n log(n))

7: Optimised Sorting; Graphics 19

30 October 2020

Quick Sort – Complexity
• In fact, although Quick Sort tends to be very efficient, its efficiency depends on a

number of factors, overall, the choice of the pivot.

• In the limit, if the pivot is the smallest or the largest element of the vector, in each
call of a vector with a range of size n, rather than having 2 subranges of size n/2
there is one empty range and another of size n-1.

• Hence, and simplifying, the complexity becomes
C ≈ n + (n-1) + (n-2) + … 1

≈ n (n+1) / 2
≈ O(n2)

i.e. quadratic, as in the case of Bubble Sort

• In fact, the number of accesses, a, to elements of the vector V, and the number of
swaps, s, can be “counted” in a modified version of the algorithm, that rather than
returning vector V, it returns the triple (V,a,s).

This is left as exercise.

7: Optimised Sorting; Graphics 20

• Several types of graphics (line graphs, pie graphs, histograms, …) and images can
be drawn with Python, namely through the library matplotlib.

• Documentation on this library is available in

https://matplotlib.org/

• Here we will only address line graphs, drawn with the following steps
1. Clear all previous graph draws (clf())
2. Fill a vector x with the x-coordinate values.
3. Fill one or more vectors with the y-coordinate values.
4. Use function plot(x, y, fmt) to draw each of the lines of the graph.
5. Define the title of the graph, axis and legend of the graph (all optional)
6. Show and save the graph in a file (optional)

Graphics in Python

30 October 2020 7: Optimised Sorting; Graphics 21

• There are many possibilities available to format the graphs.

• For the style of the lines a number of options can be used in the 3rd parameter of the
plt.plot(…) function, that takes the X and Y coordinates of the line to be drawn:
• Colours: ‘b’; blue, ‘g’: green, ‘r’: red, ‘y’: yellow, ‘k’: black
• Markers: ‘.’: point, ‘o’: circle, ‘+’: plus, ‘x’-times, ‘*’: star
• Styles: ‘-’ : solid, ‘--’: dotted, ‘:’ : dashed, ‘-.’ : dash-dot

• The graphs can be completed with further commands to provide:
• a title, plt.title(title)
• a legend, plt.legend(legend)
• labels for the x and y- axes: plt.xlabel(xlabel) and plt.ylabel(ylabel)
• saving into a file plt.savefig(filename)

• The graphs are shown in the console with command plt.show(), and can also be
stored in a file, with command plt.savefig(filename) (usually with a png or pdf
extension) for further use.

• see help(plt.plot) for more information on formats

30 October 2020 7: Optimised Sorting; Graphics 22

Graphics in Python

30 October 2020 7: Optimised Sorting; Graphics 23

def plot_sine_cosine(np, x_min, x_max):
""" plots sine and cosine functions, with np points,
in the range x_min .. x_max"""
delta = (x_max-x_min)/n # interval size
X = [x_min + i * delta for i in range(np+1)] # x-coordinates
S = [m.sin(x) for x in X] # sine values
C = [m.cos(x) for x in X] # cosine values
plt.clf() # clear graph
plt.plot(X,S,'g-.’) # sine line format
plt.plot(X,C,'bo’) # cosine line format
plt.title('trigonometric functions') # title
plt.legend(['sin', 'cos']) # legend
plt.xlabel('x values') # x-axis label
plt.ylabel('y values') # y-axis label
plt.savefig('trigo.png') # save the graph
plt.show() # draw the graph

Graphics in Python
• The following example illustrates these steps to draw a graphic of the sine and cosine

functions, with np points, in the range x_min .. x_max.

30 October 2020 7: Optimised Sorting; Graphics 24

Graphics in Python
• The graphic is shown in the console and also saved in file ‘trigo.png’.

plt.clf() # clear graph
plt.plot(X,S,'g-.’) # sine line format
plt.plot(X,C,'bo’) # cosine line format
plt.title('trigonometric functions') # title
plt.legend(['sin', 'cos']) # legend
plt.xlabel('x values') # x-axis label
plt.ylabel('y values') # y-axis label
plt.savefig('trigo.png') # save the graph
plt.show() # draw the graph

• Several types of histograms (bar plots) may be produced with Python, with a similarly
way. The simplest plots, with a single category, may be drawn with, at least, the
following steps:
1. Clear the graph;
2. Fill a vector Y with the values of each bar;
3. Fill a vector Xwith the legend of each bar;
4. Draw the bar chart plt.bar(X, Y)

• Additionally, one may specify

• the colour of the bar 3rd parameter of plt.plot(…)

• a title, plt.title(title)

• labels for the x and y- axes: plt.xlabel(xlabel) and plt.ylabel(ylabel)

• a legend plt.legend(legend)

• saving into a file plt.savefig(filename)

30 October 2020 7: Optimised Sorting; Graphics 25

Bar Plots in Python

30 October 2020 7: Optimised Sorting; Graphics 26

def plot_single_bar_chart():
""" plots a bar chart from vectors V and X"""
X = ['0-9','10-13','14-16','17-18','19-20']
V = [10, 20, 15, 35, 5]
plt.clf() # clear graph

#colors:
one of {'b', 'g', 'r', 'c', 'm', 'y', 'k', 'w’}; or
one of the Tableau Colors from the 'T10' categorical palette:
{'tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple’,
#'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan’
plt.bar(X, V, color = 'tab:red') # plot
plt.title('Students Average Grades') # title
plt.legend(['grades %']) # legend
plt.xlabel('grade ranges') # x-axis label
plt.ylabel('% of total') # y-axis label
plt.savefig('simple_plot_chart.png') # save the graph
plt.show() # show graph

Bar Plots in Python
• The following example illustrates the specification of a simple bar plot.

• To draw a multiple histogram, the procedure is similar, but care must be taken to
specify the different X and Y coordinates, as well as the xticks (which are now
convenient for labelling the categories).

30 October 2020 7: Optimised Sorting; Graphics 27

Bar Plots in Python

def plot_double_bar_chart():
""" plots a double bar chart"""
V1 = [65, 75, 90, 80, 70] # bars 1 Heights
X1 = [0.85 + v for v in range(5)] # bars 1 x-position
V2 = [90, 80, 85, 80, 95] # bars 2 Heights
X2 = [1.15 + v for v in range(5)] # bars 2 x-position
plt.clf() # clear graph
plt.bar(X1, V1, width = 0.3, color = 'g')
plt.bar(X2, V2, width = 0.3, color = 'tab:brown')
plt.xticks([1,2,3,4,5] , ['Calculus','Finance','Computing',\

'Statistics','Optimisation']) # bar names
plt.title('Statitics on Course Grades ‘)
plt.legend(['Theory','Labs'])
plt.ylabel('% of Positive Grades’)
plt.savefig('double_grades_chart.png’)
plt.show()

• Images may also be drawn in Python. To draw a (rectangular) image the following
steps must be made:

1. Define a dictionary of n colours, by means of an nx3 matrix.

– For each row of the matrix, define the [R,G,B] components, each in the range
0..1,

– Create an object, for example, with name my_cm, with function
ListedColorMap from library matplotlib.colors

2. Define a matrix M, corresponding to the (rectangular) grid of the image;

– Fill the elements of matrix M with an integer c in the range 0..n-1

– Remove the axis information plt.axis('off')

– Draw the image plt.imshow(M, cmap = my_cm)

– Saving into a file plt.savefig(filename)

• An example clarifies this procedure.
30 October 2020 7: Optimised Sorting; Graphics 28

Images in Python

30 October 2020 7: Optimised Sorting; Graphics 29

Images in Python
def plot_image():

""" plots an image"""
from matplotlib.colors import ListedColormap
plt.clf()
cores = [[0,1,0],[1,0,0],[1,1,0]] # [green, red, yellow]
imagem = [[0,0,1,1,1],[0,2,2,1,1],\

[0,2,2,1,1],[0,0,1,1,1]]
my_cmap = ListedColormap(cores)
plt.axis('off')
plt.imshow(imagem,cmap = my_cmap)
plt.savefig('flag.png')

R

G

B

