
Graph Algorithms:
Dynamic Programming

Pedro Barahona
DI/FCT/UNL

Métodos Computacionais
1st Semestre 2020/2021

Dynamic Programming: Algorithms for Graphs
• Most graph properties address optimisation goals, namely

a. Shortest paths

b. Minimum Spanning Trees

c. Minimum Hamiltonian tours (Traveling Salesman)

d. Minimum number of colours

• Some of these properties (e.g. a and b, but not c nor d), can be computed by
polynomial algorithms.

• In most cases, algorithms to compute the optima may follow a methodology,
dynamic programming, based on Mathematical Induction on the Integers:

• Once an optimal solution is obtained with n nodes, extend it to n+1 nodes.

• We will see two examples of this, in the following algorithms

• Minimum Spanning Tree – Prim’s Algorithm

• Shortest Paths – Floyd-Warshall’s Algorithm

Dynamic Programming: Graph Algorithms27 November 2020 2

Minimum Spanning Tree: Prim’s Algorithm
• A spanning tree is a subset of a connected graph that has the topology of a tree

and covers all nodes of the graph.

• It has many applications, namely to provide services to a number of sites (the
nodes) that can be interconnected in several ways (by a graph), but using the a
minimal number of connections that allow all sites to be reached, i.e. a single path
connecting any two nodes.

• Among these spanning trees one is usually interested in minimum spanning
trees (MST) that minimise the sum of the costs of the arcs selected for the tree.

• There are many polynomial algorithms that may be used to compute these MSTs,
the most common ones are the Kruskal’s and the Prim’s algorithms.

• Given the similarities between the latter and the algorithm to check connectedness
of a graph, we will address now the Prim’s Algorithm.

Dynamic Programming: Graph Algorithms27 November 2020 3

Minimum Spanning Tree: Prim’s Algorithm
• The Prim´s algorithm is an example of Dynamic Programming that extends a MST

with n nodes to n+1 nodes, with an eager selection of the new node (i.e. once the
node is selected, the selection is not backtracked for alternatives).

• The algorithm can be understood as a process of increasing the size of a current
MST, starting with 1 node and ending with all the nodes, and specified as follows:

• Maintain two sets of nodes: In and Out, where In is the set of nodes already
included in a current MST and Out are those not yet included.

1. Select arbitrarily a node from the tree to initialise the In set, and put the
others in the Out set;

2. While there are nodes in the Out set,

i. Find which node from the Out set has an arc of least cost connecting it
to one of the nodes of the In set;

ii. Transfer the node from the Out set to the In set and include the least
cost arc in the current MST.

Dynamic Programming: Graph Algorithms27 November 2020 4

a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

• Start with an arbitrary node in the In
set

• Start with the Out set with all the
other nodes

• Initialise the MST to empty

In = [e]

Out = [a,b,c,d,f,g]

MST = {}

e

a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

• Check all arcs between nodes in the
In and Out sets

• Chose that with minimum cost

In = [e]

Out = [a,b,c,d,f,g]

MST = {}

5

b

f

g

a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [e,b]

Out = [a,c,d,e,f,g]

MST = {<b,e>}

• Move the out node of the arc from
the Out to the In set.

• Include the arc in the MST

b

a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [b,e]

Out = [a,c,d,f,g]

MST = {<b,e>}

• Check all arcs between nodes in the
In and Out sets

• Chose that with minimum costa

c

f

g

3

a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [b,c,e]

Out = [a,d,f,g]

MST = {<b,e>, <b,c>}

• Move the out node of the arc from
the Out to the In set.

• Include the arc in the MST

c

2

a

c
db

e
f

6

4

9

43

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

• Check all arcs between nodes in the
In and Out sets

• Chose that with minimum cost

In = [b,c,e]

Out = [a,d,f,g]

MST = {<b,e>, <b,c>}

a

f

g

2

a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [b,c,e,f,]

Out = [a,d,g]

MST = {<b,e>, <b,c>,

<c,f>}

• Move the out node of the arc from
the Out to the In set.

• Include the arc in the MST

f

a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [b,c,e,f]

Out = [a,d,g]

MST = {<b,e>, <b,c>,

<c,f>}

• Check all arcs between nodes in the
In and Out sets

• Chose that with minimum costa

d

g

4

a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [b,c,d,e,f]

Out = [a,g]

MST = {<b,e>, <b,c>,

<c,f>, <d,f>}

• Move the out node of the arc from
the Out to the In set.

• Include the arc in the MST

d

a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = [b,c,d,e,f]

Out = [a,g]

MST = {<b,e>, <b,c>,

<c,f>, <d,f>}

• Check all arcs between nodes in the
In and Out sets

• Chose that with minimum costa

g

4

a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

• Move the out node of the arc from
the Out to the In set.

• Include the arc in the MST

In = [a,b,c,d,e,f]

Out = [g]

MST = {<b,e>, <b,c>,

<c,f>, <d,f>

<a,c>}

a

a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

• Check all arcs between nodes in the
In and Out sets

• Chose that with minimum cost

g7

In = [a,b,c,d,e,f]

Out = [g]

MST = {<b,e>, <b,c>,

<c,f>, <d,f>

<a,c>}

a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

• Move the out node of the arc from
the Out to the In set.

• Include the arc in the MST

In = [a,b,c,d,e,f,g]

Out = []

MST = {<b,e>, <b,c>,

<c,f>, <d,f>

<a,c>, <e,g>}

g

a

c
db

e
f

6

4

9

4
2

3

9

5

g7

6

Minimum Spanning Tree: Prim’s Algorithm

In = []

Out = [a,b,c,d,e,f,g]

MST = {<b,e>, <b,c>,

<a,c>, <c,f>,

<e,g>, <d,f>}

• The Out set is now empty

• Return the MST.

Minimum Spanning Tree: Prim’s Algorithm
• Several variants can be used in the implementation of the Prim’s algorithm, using

appropriate data structures that make it more efficient. Here we present a simple
implementation that nonetheless is acceptable for relatively large graphs.

1. Select arbitrarily a node from the tree to initialise the In set (here node 0);
2. Put the other nodes in the Out set;
3. Initialises the Minimum spanning tree T to an empty graph
4. Update and eventually returns the tree T as well as the remaining Out nodes

Dynamic Programming: Graph Algorithms

def prim(G):
""" Returns the minimum spanning tree of graph G,
using the prim algorithm"""
n = len(G)
In = [0]
Out = [i for i in range(1,n)]
row = [-1 for i in range(n)]
T = [row.copy() for i in range(n)]
for i in range(n):

T[i][i] = 0
while ...:

...
return (T, Out)

27 November 2020 19

Minimum Spanning Tree: Prim’s Algorithm
• The tree is then updated as follows:

1. While there are nodes in the Out set,
i. Find the arc of least cost between a node u in the In set and a node v

from the Out set (if there is one!);
ii. If no arc is selected, that means the graph is not connected and should

be returned (together as the remaining Out nodes)
iii. Include the least cost arc in the current MST.
iv. Transfer the node from the Out set to the In set and

Dynamic Programming: Graph Algorithms

while len(Out) > 0:
min_arc = math.inf
u = 0
v = 0
for i in In:

for j in Out:
if G[i][j] > 0 and G[i][j] < min_arc:

u = i
v = j
min_arc = G[i][j]

...

27 November 2020 20

Minimum Spanning Tree: Prim’s Algorithm
• The tree is then updated as follows:

1. While there are nodes in the Out set,
i. Find the arc of least cost between a node u in the In set and a node v

from the Out set (if there is one!);
ii. If no arc is selected, that means the graph is not connected and should

be returned (together as the remaining Out nodes); otherwise
iii. Include the least cost arc in the current MST.
iv. Transfer the node from the Out set to the In set

Dynamic Programming: Graph Algorithms

while len(Out) > 0:
...

u = i
v = j

...
if u == 0 and v == 0:

return (T, Out)
T[u][v] = G[u][v]
T[v][u] = G[v][u]
In.append(v)
Out.remove(v)

27 November 2020 21

Minimum Spanning Tree: Prim’s Algorithm
• The complete algorithm is shown below:

def prim(G):
""" ... """
n = len(G)
In = [0]
Out = [i for i in range(1,n)]
row = [-1 for i in range(n)]
T = [row.copy() for i in range(n)]
for i in range(n):

T[i][i] = 0
while len(Out) > 0:

min_arc = math.inf
u = 0
v = 0
for i in In:

for j in Out:
if G[i][j] > 0 and G[i][j] < min_arc:

u = i
v = j
min_arc = G[i][j]

if u == 0 and v == 0:
return (T, Out)

T[u][v] = G[u][v]
T[v][u] = G[v][u]
In.append(v)
Out.remove(v)

return (T, Out)

Dynamic Programming: Graph Algorithms27 November 2020 22

Minimum Spanning Tree: Prim’s Algorithm
• It is easy to prove, by induction, that the algorithm is correct. If T is an MST with least

cost with n nodes, adding to it the least cost arc will make it an MST with least cost
with n+1 nodes (adding any other arc would lead to a higher cost spanning tree).

• As to the worst cost complexity of the algorithm, with this implementation, we notice
that the while loop is executed n-1 times (n is the number of nodes of the graph, |V|).

• Finding the minimal cost arc, when k nodes are already in the In list, requires two
nested loops over ranges with k and n-k values, i.e. at most n2/4 (for k = n/2)
executions of the body of the loop

• All operations in the loop are “basic”, and so the complexity of this implementation of
the Prim’s algorithm is O(n*n2/4) i.e. O(|V|3) (where |V| = n).

• Note: Implementations with priority queues and other advanced data structures have
better complexity, namely O(|E|+Vlog|V|).

Dynamic Programming: Graph Algorithms

while len(Out) > 0:
...
for i in In:

for j in Out:
...

27 November 2020 23

Shortest Paths – Floyd-Warshall’s Algorithm
• There are many algorithms for finding shortest paths between nodes of weighted

graphs. They include algorithms to find one shortest path between two nodes, like the
Dijskstra algorithm, or to find all shortest paths between any two nodes of the graph,
namely the Floyd-Warshall’s (FW) algorithm.

• As the previous one, the FW algorithm explores dynamic programming in the
following way:

• The initial shortest path between any two nodes, is the direct distance (that can be
infinite).

• A list In is initialised with all n nodes;

• The current shortest distance between two nodes is then updated by checking
whether an indirect path exists passing in each of the nodes in list In.

• The final result is a matrix with all minimal distances between any two nodes.

Dynamic Programming: Graph Algorithms27 November 2020 24

Shortest Paths – Floyd-Warshall’s Algorithm
• The algorithm can thus be implemented as follows:

1. Initialise a matrix S of shortest paths with the adjacency matrix (that is, only
direct distances between any two nodes are initially considered).
• Of course, nodes that are not directly connected by an arc have a

distance of -1 at this stage. For convenience, we will assign them to inf.
1. Now, for all values k in the In list (i.e. from 0 to n-1) iterate.

• In iteration k, update S, by considering all indirect paths between nodes i
and j passing through node k.

3. After the last iteration, matrix S contains all shortest paths between any two
nodes of G.

• Notice that this algorithm only computes the paths with shortest distance between
any two nodes but does not return what these paths are.

• In fact, a small addition to the algorithm, coming shortly, allows the paths to be
obtained.

Dynamic Programming: Graph Algorithms27 November 2020 25

• The external for loop guarantees that all paths, between nodes i and j, consider, all
the paths through nodes k (1, 2, 3, …, n), previously computed.

• The shortest paths are updated by considering the triangular inequality, with paths
passing through the previous values of k.

Dynamic Programming: Graph Algorithms27 November 2020 26

def floyd(G):
""" Returns the minimum distances between any two modes

of graph G, using the Floyd-Warshall’s algorithm."""
n = len(G)
S = [[math.inf for i in range(n)] for j in range(n)]
for i in range(n):

for j in range(n):
if G[i][j] != -1:

S[i][j]= G[i][j]
In = [i for i in range(n)]
for k in In:
for i in range(n):

for j in range(n):
if S[i][k] + S[k][i] < S[i][j]:

S[i][j] = S[i][k] + S[k][j]
return S

Shortest Paths – Floyd-Warshall’s Algorithm

Shortest Paths – Floyd-Warshall’s Algorithm
• The correction of the algorithm can be proved by induction on the number of nodes

considered in indirect paths (left as exercise).

• As to the complexity, it is easy to see that the algorithm requires 3 nested loops of
size n, with a basic operation in the body,

• The complexity of the algorithm is thus O(|V|3).

• Notice that algorithms to compute shortest paths between 2 nodes, like the Dijkstra
algorithm, have complexity O(|V|2), but they do not consider the distance between all
the nodes.

Dynamic Programming: Graph Algorithms27 November 2020 27

for k in In: # In = [0..n-1]
for i in range(n):

for j in range(n):

Path Reconstruction – Floyd-Warshall’s Algorithm
• The previous algorithm does not provide the shortest paths between any two nodes,

but rather the shortest distances of any path between the nodes.

• Nevertheless, these paths may be easily reconstructed if a matrix is computed during
the FW algorithm, to it possible to later compute the shortest path from some node i
to another node j.

• Matrix Next plays this role. In such matrix, Next[i][j] = k means that to follow the
shortest path to node j, the path should start by the arc i ➞ k.

• All that is needed is to compute matrix Next during the FW algorithm. To do so, all
values Next[i][j] should be initialised with j (in the beginning, i.e. before exploring
the graph, the best path is the direct path).

• In fact, if there is no connection between nodes i and j, Next[i][j] should be
initialised to inf, to account for that non-connection.

• Then, if a better path is found through node k, Next[i][j] must be updated to
Next[i][k], i.e. to go from i to j, one should start in the best arc to go from i to k.

• Better paths are found in the inner loop of the FW algorithm, so one needs simply to
add some extra instructions to function floyd just developed.

Dynamic Programming: Graph Algorithms27 November 2020 28

Path Reconstruction – Floyd-Warshall’s Algorithm
• The initialisation of matrix Next (i.e. Next[i][j] = j) can be implemented as:

• If there is no connection, this should be accounted for in Next

• The update of the elements of Next may be done in the inner loop of the floyd
function, taking into account that

• If a better path is found, through node k, Next[i][j] must be updated to
Next[i][j], i.e. to go from i to j, one should start in the best arc to go from i to k.

Dynamic Programming: Graph Algorithms27 November 2020 29

Next = [[j for j in range(n)] for i in range(n)]

for k in In:
for i in range(n):

for j in range(n):
if S[i][k] + S[k][i] < S[i][j]:

S[i][j] = S[i][k] + S[k][j]
Next[i][j] = Next[i][k]

if G[i][j] != -1:
...

else:
Next[i][j] = math.inf

Path Reconstruction – Floyd-Warshall’s Algorithm

Dynamic Programming: Graph Algorithms27 November 2020 30

def floyd(G):
""" ..."""
n = len(G)
S = [[math.inf for i in range(n)] for j in range(n)]
Next = [[j for j in range(n)] for i in range(n)]
for i in range(n):

for j in range(n):
if G[i][j] != -1:

S[i][j]= G[i][j]
else:

Next[i][j] = math.inf
In = [i for i in range(n)]
for k in In:
for i in range(n):

for j in range(n):
if S[i][k] + S[k][i] < S[i][j]:

S[i][j] = S[i][k] + S[k][j]
Next[i][j] = Next[i][k]

return (S, Next)

• The completed Floyd function is thus shown below (changes in bold).

• Once the matrix Next is returned the path between any two nodes, u and v, can be
obtained by following the trail indicated by this matrix, as shown below

• The first test checks whether there is any path between nodes u and v. If not it
returns an empty path.

• Otherwise the path is “reconstructed”, starting in node u …
• … and continuing until reaching node v

• With this reconstruction technique, the complexity of the FW algorithm is not
changed, and the paths are only computed when needed.

Path Reconstruction – Floyd-Warshall’s Algorithm

Dynamic Programming: Graph Algorithms27 November 2020 31

def path(u,v,Next):
""" Returns the shortest path between nodes u and v,
according to matrix Next computed with function floyd."""
if Next[u][v] == math.inf:

return []
P = [u]
while u != v:

u = Next[u][v]
P.append(u)

return P

