
Lab. 6 Efficient Array Sorting

1. Read Lists from files

Read a file with several numbers, one per line, into a list of numbers (a vector). Use the following

signature
def read_list_from_file (fname):

that should return a list of numbers.

Test your code with files “dados_X.txt”, for different values of X, available in the web site, to yield

the corresponding lists L_X.

2. Adapt Merge Sort

Adapt the implementation of Merge Sort presented in the slides of class 7, with a function with

signature
def merge_sort_info(L, inc):

that includes an extra True / False Boolean parameter inc, specifying whether the sorting of list V is

done in increasing / decreasing order, respectively.

The function returns a triple (S, nc, tm), where

• S is the sorted list, and

• nc is the number of comparisons made (e.g. when merging two sorted lists)

• tm is the process time (Note: use process_time() function from module time)

Check the correctness of your implementation with lists L_x.

3. Adapt Quick Sort

Adapt the implementation of Quick Sort presented in the slides of class 7, with a function with

signature

def quick_sort_info(L, inc):

that includes an extra True / False Boolean parameter inc, specifying whether the sorting of list V is

done in increasing / decreasing order, respectively.

The function returns a quadruple (S, nb, ns, tm), where

• S is the sorted list, and

• nc is the number of comparisons made, and

• ns is the number of swaps made while partitioning the list.

• tm is the process time (Note: use process_time() function from module time)

Check the correctness of your implementation with lists L_x.copy().

4. Assess efficiency of Quick Sort and Merge Sort

Check the efficiency (and correctness) of your implementation of the previous functions

a. For large lists (L_1000, L_10000 and L_100000);

b. When the input lists are already sorted either in increasing or decreasing order.

5. Graphics

Specify a function with signature

def draw_complexity(n, xlin, ylin):

to draw a graph allowing the comparison of complexities O(n), O(log(n), o(n2) and O(n log(n)), where

• n defines the range of x values (note: from 1 to n); and

• xlin, ylin are Booleans that specify whether the axes use a linear or logarithmic scale.

Hint: Use commands xscale('linear')/yscale('linear') or yxscale('log')/yscale('log')

from library mathplotlib.pyplot to specify the type of scales to be used in the x and y axes.

