
WHILE instruction; Strings

19 October 2021 Pedro Barahona - 3: WHILE instruction; Strings 1

Pedro Barahona
DI/FCT/UNL

Computational Methods
1st Semester 2021/22

19 October 2021 Pedro Barahona - 3: WHILE instruction; Strings 2

Iterative Execution - WHILE
• In many cases, although a block of instructions is to be repeated, it is not known

before hand how many times it should be iterated.

• For example, to find an element in a vector (or a word in a sequence of text), one
might not have to look at all the elements of the array/matrix/text, since the element
may be found before. In this case, the use of a FOR instruction (although possible)
might not be desirable.

• In these cases, the WHILE instruction should be used. The WHILE instruction has
the following syntax in Python

while <CONDITION>:
WHILE-BLOCK

19 October 2021 Pedro Barahona - 3: WHILE instruction; Strings 3

Iterative Execution - WHILE

• The behaviour of this instruction is quite intuitive. When the program reaches this
instruction

1. The CONDITION is assessed

2. If the condition is not satisfied the WHILE-BLOCK is not executed and the
program “jumps” to the next instruction.

3. Otherwise, the WHILE-BLOCK is executed.

4. After executing the block, the program goes back to step 1 (to assess the
CONDITON again, …).

• NOTE: Care has to be taken in the specification of the condition and the WHILE-
BLOCK. In particular, if this block does not change the variables involved in the
CONDITION, so as to make it eventually false, the program loops forever!

while <CONDITION>:
WHILE-BLOCK

19 October 2021 Pedro Barahona - 3: WHILE instruction; Strings 4

Euclid’s Algorithm
• This instruction is illustrated with the Euclid's algorithm that finds the greatest

common divider of two integers, with the following algorithm.

1. Take the two numbers, and make them A and B, ensuring that A is no less than B.

2. While A is greater than B

• Obtain C, the difference between A and B (i.e. C = A – B);

• Rename the numbers B and C, such that A becomes the larger of them and B
the smallest.

• Check again the condition and iterate as many times as needed.

• When A becomes equal to B, the iterations stop.

• The GCD of the initial numbers is A.

19 October 2021 Pedro Barahona - 3: WHILE instruction; Strings 5

Euclid’s Algorithm
Example:

• Let the numbers be 270 and 72, and see the evolution of the values of a, b and c.

• Hence 18 is the GCD of 270 and 72.

a
270
198
126
72
54
36
18

b
72
72
72
54
18
18
18

c = a-b
198
126
54
18
36
18
0

19 October 2021 Pedro Barahona - 3: WHILE instruction; Strings 6

Euclid’s Algorithm - WHILE
• The Euclid’s Algorithm can be implemented with the following function:

def euclid(p, q):
""" computes m, the greatest common divider of p and q."""
a = max(p,q)
b = min([p,q])
while a > b:

c = a - b
if c < b:

a = b # the order between a and b
b = c # cannot change, i.e. a >= b

else:
a = c # and b remains b

print("a =", a,"; b =", b)
return a # since it is not a > b, then a = b

19 October 2021 Pedro Barahona - 3: WHILE instruction; Strings 7

Euclid’s Algorithm - WHILE
• A trace of the function execution shows how the values of f2, f1 and f are maintained

In : m = euclid(270, 72)
a = 198 ; b = 72
a = 126 ; b = 72
a = 72 ; b = 54
a = 54 ; b = 18
a = 36 ; b = 18
a = 18 ; b = 18
In : m
Out: 18

...
while a > b:

c = a – b
if c < b:

a = b
b = c

else:
a = c

print("a =", a,"; b =", b)
...

19 October 2021 Pedro Barahona - 3: WHILE instruction; Strings 8

Iterative Execution - WHILE
• We can go back to the problem referred above of finding a value in a vector.

• In particular we are interested in specifying a function find/2 that takes

• A number as the first argument; and

• A list (vector) as the second argument;

and returns

• The index of the first position in the list where that element appears.

• Note: If there is no such element the function should return None.

• Some examples:

• find(3, [5, 8, 4, 3, 6, 8, 2]) à 3

• find(8, [5, 8, 4, 3, 6, 8, 2]) à 1

• find(9, [5, 8, 4, 3, 6, 8, 2]) à None

19 October 2021 Pedro Barahona - 3: WHILE instruction; Strings 9

Iterative Execution - WHILE
• Before implementing the function we should design a convenient algorithm to solve

this problem. Informally

• While you have not found it and there is a next element

• Look at the next element of the array to see if it is the intended one

• Report the index of the element where you found it

• Although the skeleton of the algorithm is there, a few points must be taken care

1. Where do we start from

2. What if the element is not in the array

• Firstly, we must guarantee that we look at the first element, … if there is one!

• Secondly, if there are no more elements to look at, the algorithm must return None.

• These issues may be dealt with in the specification of the find/2 function

19 October 2021 Pedro Barahona - 3: WHILE instruction; Strings 10

Iterative Execution - WHILE
• The algorithm can now be implemented as function find/2, shown below

def find(x, V):
"""this function returns k, the first position, where
v is in array V. It returns None if v is not present."""

i = 0 # start searching at position i = 0

n = len(V)
while i < n and V[i] != x: # while it is worth looking

i = i + 1
if i < n: # x was found in position i

return i
else: # x was not found

return None

19 October 2021 Pedro Barahona - 3: WHILE instruction; Strings 11

Iterative Execution - WHILE
• A last note on the condition that could have been used in the WHILE

• As we know, trying to read an element of an array past its size reports an error

• Hence it is important that testing the value of the element in a certain index is only done
after being sure that such index is within the bounds of the vector.

• Python short circuits the evaluation of Boolean expressions such as A and B (A or B):

1. Firstly, the Boolean expression A is assessed;

2. If A is False (resp. True) the condition is False (resp. True) and B is not assessed!

3. Otherwise B is assessed.

4. The value of the condition is the value of B.

while i < n and V[i] != x:

In : A = [4, 7, 5]
In : A[4]

IndexError: list index out of range

19 October 2021 Pedro Barahona - 3: WHILE instruction; Strings 12

WHILE vs. FOR
• When it is known the maximum number of times a cycle might be repeated, an

instruction FOR might be used to force up to this (max) number of cycles

• In this case, when the condition to stop the cycle becomes True (i.e. the value was
found), then the cycle should be interrupted and the index returned

• If the condition is never met, then None is returned.

• In the context of a function, the interruption is achieved with instruction return, (as
below) that immediately ends the function execution.

def find_2(x, V):
"""this function returns k, the first position, where
v is in array V. It returns None if v is not present."""
n = len(V)
for i in range(0,n): # search indices i: 0 <= i < n

if x == V[i]: # if the element is found in position i
return i # return the value of i

return None # if x is not found return None

19 October 2021 Pedro Barahona - 3: WHILE instruction; Strings 13

Nested Functions
• As functions become more complex, their design relies on other functions, either

system defined functions or user functions previously defined.

• For example if the sin/1 function has been defined (in library math as m) then
function tg/1 could have been defined in the obvious way (with the same meaning of
function m.tan)

• As we already knew, functions can call other functions. Assuming the called
functions terminate, the calling functions will also terminate.

• However, what happens when a function calls itself?

def tg(x):
"""this function returns the tangent of angle x,
computed from the sin of that angle"""
s = m.sin(x)
c = sqrt(1-s**2)
if c != 0

t = s/c;
else:

t = m.inf
return t

19 October 2021 Pedro Barahona - 3: WHILE instruction; Strings 14

Recursive Functions: Factorial
• When functions call themselves, i.e. they are defined recursively, one must be

careful so as to guarantee that they do terminate.

• Take for example the case of the function fact/1 defined recursively to obtain the
factorial of a non-negative integer, i.e. the same as function factorial, pre-defined in
Python library math.

• This functionality can of course be defined iteratively, by means of the
accumulation technique seen in the previous lecture, implemented with a for loop.

def fact_ite(n):
"""this function computes iteratively the factorial of n"""
f = 1
for i in range(1,n+1): # i varies from 1 to n

f = f * i
return f

19 October 2021 Pedro Barahona - 3: WHILE instruction; Strings 15

Recursive Functions: Factorial
• A more “mathematical” definition could however be used to guide the function

implementation:

• Notice that in the implementation of this recursive function, the termination condition
must be tested before the recursive call is made.

• Otherwise the program loops forever!

def fact_rec(n):
"""this function computes recursively the factorial of n"""
if n <= 1:

return 1
else:

return n * fact_rec(n-1)

1 if n <= 1

n * (n-1)! if n > 1
n! =

19 October 2021 Pedro Barahona - 3: WHILE instruction; Strings 16

Recursive Functions: Factorial
• In fact, Python avoids infinite recursion, by setting a limit on the number of recursive

call that are made.

• The current recursive limit is obtained by method sys.getrecursionlimit().

• This limit may be changed to k, with method sys.setrecursionlimit(k)

• Note: the recursion limit is not exactly the number of recursive calls.

In : import sys
In : sys.getrecursionlimit()
Out: 3000
In : z.fact_rec(30)
Out: 265252859812191058636308480000000
In : sys.setrecursionlimit(55)
In : sys.getrecursionlimit()
Out: 55
In : z.fact_rec(30)
......
RecursionError: maximum recursion depth exceeded in comparison

19 October 2021 Pedro Barahona - 3: WHILE instruction; Strings 17

Recursive Functions: Greatest Common Divider
• The same recursive technique may be used to define the GCD of two numbers,

taking into account that :

• Note again that in this recursive function, the termination condition is tested before
the recursive call is made

def gcd(p, q):
""" computes m, the greatest common divider
divider of p and q."""
if p == q:

return p
else:
a = min(p,q)
b = abs(p-q)
return gcd(a, b)

m if m = n

gcd(min(m,n),abs(m-n)) if m ≠ n
gcd(m,n) =

19 October 2021

Text Processing
• Much useful information is not numeric and takes the form of text (e.g. names,

documents, ...). Hence the need to represent text and to subsequently process it.

• All programming languages support text data types, namely

• Characters; and

• Strings (sequences of characters).

• Basic 128 characters, include letters, digits, punctuation and control characters,
and are usually represented by their ASCII (American Standard Code for
Information Interchange) codes.

• Notice that 128 different characters require 7 bits to be represented (128 = 27).

• With an 8th bit (initially meant for parity checking), the extended ASCII code allows
the representation of 128 more characters used in several languages (other than
English).

Pedro Barahona - 3: WHILE instruction; Strings 18

19 October 2021

Text Processing
• The characters represented in 7bit ASCII code are:

• Letters (52), uppercase (26) e lowercase (26)

• Digits (10)

• Space and other punctuation “visible” characters (34)

• ‘ “ () [] { } , . : ; = < > + - * \ | / ^ ~ ´ ` # $ % & _ ! ? @

• Control (invisible) characters (32)

• horizontal tab (\t), new line (\n), alert (\a), ...

• With an 8th bit, other 128 characters can be represented, such as

• ç, ã, ñ, š , ø , ∞, ¬ j, Σ, ш, غغ,אל,ך

• The representation of other alphabets (Chinese, Arab, Indian, ...) require 16 bits (a
total of 216 = 65536 characters) and is supported in Unicode (widely adopted in
the Internet).

• Unicode (UTF) subsumes the ASCII code (the initial 256 characters are the same).

Pedro Barahona - 3: WHILE instruction; Strings 19

19 October 2021

Strings

• Strings are sequences of characters, and text can be regarded as a “big” string.

• To assign a variable with a string, the text must be delimited by quotation marks
(") or single quotes ('). For example,

• x = "this is a string"

• Having two delimiters is quite handy, when the text includes one of them, as in
• name = "Rui d' Almeida" ; or
• next = 'He said "Enough" and left.'

… although escape sequences can be used
• name = 'Rui d\' Almeida' ; or
• next = "He said \"Enough\" and left."

… and these are sometimes unescapable
• sentence = "Rui d' Almeida said \"Enough\" and left."
• sentence = 'Rui d\' Almeida said "Enough" and left.'

Pedro Barahona - 3: WHILE instruction; Strings 20

19 October 2021

Escape Sequences

• The following escape sequences are useful for referring special non visible
characters, namely control characters.

• There are some differences in the handling of the delimiters and escape
characters, and the “” delimiter should be preferred. The following escape
sequences are accepted in Python (e.g. in a print statement).

\\ back slash (\)
\” quotation (”)
\’ single quote (‘)
\0 nil (code 0)
\a alert (code 7)
\b back (code 8) – overwrites previous character
\f new page (code 12).
\n new line (code 10).
\r return (code 13) – overwrites previous line
\t horizontal tab (code 9).
\v vertical tab (code 11).

Pedro Barahona - 3: WHILE instruction; Strings 21

19 October 2021

String Operations

• Strings are encoded as lists of characters of characters, so the usual operations on
vectors can be used to compose and decompose strings.

Concatenation

• Strings can be concatenated with the + operator, as with lists.

In : v1 = [1,2,3]
In : v2 = [4,5,6]
In : v1 + v2
Out: [1,2,3,4,5,6]
In : name = "Rui"
In : surname = "Santos"
In : full = name + surname
In : full
Out: "RuiSantos"
In : full = name + " " + surname
Out: "Rui Santos"

Pedro Barahona - 3: WHILE instruction; Strings 22

19 October 2021

String Operations
Projection (Extraction) of Substrings

• Projection of strings to some of their substrings (or characters) can be obtained
through the usual vector operations

• Several methods are defined in the class string (cf. the dir function)

In : text = "This is a string."
In : text
Out: 'This is a string.'
In : text[0:4]. # all chars between the 1st and 5th

Out: 'This'
In : text[-7:-1]
Out: ‘string'

Pedro Barahona - 3: WHILE instruction; Strings 23

In : dir(text)
Out:
['__add__’,
...
'zfill']

19 October 2021

String Operations

Substring Search

• If one is interested in finding the (first) position(s) where a substring occurs within a
string, the find and rfind methods can be used.

In : text = 'This is a string.'
In : text.find('string')
Out: 10
In : text.find('i')
Out: 3
In : text.rfind('i')
Out: 13
In : text.find('z')
Out: -1 # not found

Pedro Barahona - 3: WHILE instruction; Strings 24

19 October 2021

String Operations

Splitting Strings

• In many cases we are interested in splitting a string by some character(s) that is
used as a separator (for example a semi-colon (;), a tab (‘\t) or a space.

• Method split() returns a list of strings, without the separators

• Note: Beware of spaces and “end of line” (‘\n’) characters that might be maintained
in the individual strings.

In : line = 'abd; def; 123'
In : line.split(';')
Out: ['abd', ' def', ' 123']
In : line = ‘12\t24\t45.8\n’
In : line.split(‘\t’)
Out: ['12', '24', '45.8\n']

Pedro Barahona - 3: WHILE instruction; Strings 25

19 October 2021

String Operations

“Cleaning” Strings

• In many cases we are not interested in leading and trailing spaces, as well as
white characters such as tabs and end-of-lines (e.g. when they are read from files).

• They can be eliminated with methods strip.

In : line = " This is a line. \n"
In : len(line)
Out: 21
In : line.strip()
Out: 'This is a line.’
In : len(line.strip())
Out: 15

Pedro Barahona - 3: WHILE instruction; Strings 26

19 October 2021

String Operations

Comparing Strings

• Strings may also be compared lexicographically (i.e. alphabetically).

• Notice that lower and upper cases are different (in ASCII, upper cases are before
lower cases).

In : "abc" == "abc"
Out: True
In : "abc" > "abd"
Out: False
In : "A" < "a"
Out: True
In : "A" < "5"
Out: False
In : "5" < 5
TypeError: '<' not supported between instances of 'str' and 'int'

Pedro Barahona - 3: WHILE instruction; Strings 27

19 October 2021

String Types

Strings and Numbers

• Strings are different from numbers, and different operations apply to these types.

• But converting strings to numbers and vice-versa is possible (but beware of different
types of numbers).

In : '45'+'12'
Out: '4512'
In : '45'*'12'
TypeError: can't multiply sequence by non-int of type 'str’
In : int('45')
Out: 45
In : str(34)
Out: '34’
In : float('45.7')
Out: 45.7
In : int('45.7')
ValueError: invalid literal for int() with base 10: '45.7'

Pedro Barahona - 3: WHILE instruction; Strings 28

19 October 2021

String Type Information

Pedro Barahona - 3: WHILE instruction; Strings 29

Information Functions about Types

• In addition to the conversion functions a number of methods are available to strings
to obtain the types of characters, namely

• isalnum - string composed of alphanumeric characters
• isalpha - string composed of alphabetic characters
• isascii - string composed of ASCII characters (7 bits, no special characters)
• isdigit - string where all characters are digits
• isidentifier - string is a valid identifier
• islower - string where all characters are lower case letters
• isprintable - string where all characters are printable (spaces, tabs, eol)
• isspace - string where all characters are non printable (spaces, tabs, eol)
• istitle - string starting with an upper case letter followed by lower case
• isupper - string where all characters are upper case letters

19 October 2021

String Type Information

Pedro Barahona - 3: WHILE instruction; Strings 30

Some examples
In : 'ab5dc'.isalnum()
Out: True
In : 'ação'.isascii()
Out: False
In : '3456'.isdigit()
Out: True
In : '_45'.isidentifier()
Out: True
In : ‘a45'.isidentifier()
Out: True
In : '56 67'.isprintable()
Out: True
In : '\t \n'.isprintable()
Out: False
In :'Doutor'.istitle()
Out: True

In : 'ab5dc'.isalpha ()
Out: False
In : ‘facto'.isascii()
Out: True
In : ‘34a56'.isdigit()
Out: False
In : 'a.45'.isidentifier()
Out: False
In : '45a'.isidentifier()
Out: False
In : '56 67’.isspace()
Out: False
In : '\t \n’.isspace()
Out: False
In :'DR.'.istitle()
Out: True

